answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

What uses energy from the high-energy electrons to transport hydrogen across the thylakoid membrane?

The protein complex ATP synthase uses the energy from high-energy electrons to transport hydrogen ions across the thylakoid membrane during the process of photosynthesis. This creates a proton gradient that drives the production of ATP, which is an important energy carrier in the cell.


What is passage of electrons along a series of carrier molecules from a higher to a lower energy level?

This is known as the electron transport chain, which occurs during cellular respiration and photosynthesis. Electrons move along a series of carrier molecules embedded in the inner mitochondrial membrane or thylakoid membrane, releasing energy that is used to generate ATP or NADPH, respectively. The flow of electrons helps create a proton gradient that drives ATP synthesis.


What is energy-carrying molecule called?

carrier molecule1. A molecule that plays a role in transporting electrons through the electron transport chain. Carrier molecules are usually proteins bound to a nonprotein group; they can undergo oxidation and reduction relatively easily, thus allowing electrons to flow through the system. There are four types of carrier: flavoproteins (e.g. FAD), cytochromes, iron-sulphur proteins (e.g. ferredoxin), and ubiquinone.2. A lipid-soluble molecule that can bind to lipid-insoluble molecules and transport them across membranes. Carrier molecules have specific sites that interact with the molecules they transport. Several different molecules may compete for transport by the same carrier. See transport protein.


What causes the electrons to become excited and move into the electron transport chain?

Electrons become excited in the electron transport chain due to the energy input from electron carrier molecules like NADH and FADH2. These electron carriers donate the electrons to the proteins in the chain, creating a flow of electrons that drives the production of ATP.


Is carrier mediated passive or active?

Carrier-mediated transport can be either passive or active, depending on the type of carrier protein involved. Passive carrier-mediated transport allows molecules to move down their concentration gradient without requiring energy input, while active carrier-mediated transport moves molecules against their concentration gradient using energy from ATP or an electrochemical gradient.

Related Questions

What compound is NADH converted to when it transfers high energy electrons to the first electron carrier?

NADH is converted to NAD+ when it transfers high-energy electrons to the first electron carrier of the electron transport chain.


What allows the passage of electrons along the series of carrier molecules from higher to a lower energy level?

The electron transport chain.


Why do high-energy electrons need carrier molecules?

High-energy electrons are unstable and reactive, so they need carrier molecules to transport them safely without causing damage to the cell. Carrier molecules such as NADH and FADH2 can carry high-energy electrons during cellular respiration, allowing them to participate in energy-producing reactions without causing harm.


Which organelle makes energy stored in highenergy compounds available for the cell?

Mitochondrian


What uses energy from the high-energy electrons to transport hydrogen across the thylakoid membrane?

The protein complex ATP synthase uses the energy from high-energy electrons to transport hydrogen ions across the thylakoid membrane during the process of photosynthesis. This creates a proton gradient that drives the production of ATP, which is an important energy carrier in the cell.


What are the two energy carrier molecules used to transfer energy from the citric acid cycle to the electron transport chain?

The two energy carrier molecules used are NADH and FADH2. These molecules are produced during the citric acid cycle and deliver electrons to the electron transport chain, where they drive the production of ATP through oxidative phosphorylation.


What is the carrier for energy and high energy electrons during glycolysis?

nadh!


What is passage of electrons along a series of carrier molecules from a higher to a lower energy level?

This is known as the electron transport chain, which occurs during cellular respiration and photosynthesis. Electrons move along a series of carrier molecules embedded in the inner mitochondrial membrane or thylakoid membrane, releasing energy that is used to generate ATP or NADPH, respectively. The flow of electrons helps create a proton gradient that drives ATP synthesis.


What is energy-carrying molecule called?

carrier molecule1. A molecule that plays a role in transporting electrons through the electron transport chain. Carrier molecules are usually proteins bound to a nonprotein group; they can undergo oxidation and reduction relatively easily, thus allowing electrons to flow through the system. There are four types of carrier: flavoproteins (e.g. FAD), cytochromes, iron-sulphur proteins (e.g. ferredoxin), and ubiquinone.2. A lipid-soluble molecule that can bind to lipid-insoluble molecules and transport them across membranes. Carrier molecules have specific sites that interact with the molecules they transport. Several different molecules may compete for transport by the same carrier. See transport protein.


What causes the electrons to become excited and move into the electron transport chain?

Electrons become excited in the electron transport chain due to the energy input from electron carrier molecules like NADH and FADH2. These electron carriers donate the electrons to the proteins in the chain, creating a flow of electrons that drives the production of ATP.


What is the energy of the high energy electrons used for every time high energy electrons move down the electron transport chain?

To transport H+ ions out of the matrix.


What is the energy of the high energy electrons used for every time 2 high energy electrons move down the transport chain?

To transport H+ ions out of the matrix.