If the core of a supernova explosion contains three or more solar masses of matter, it will most likely become a black hole. The gravitational force is so strong that the core collapses into a singularity, forming a black hole.
Following certain types of Supernova events there can often be a gravitational collapse of massive stars and this can result in the stellar remnant becoming a neutron star. Based on the Tolman-Oppenheimer-Volkoff limit the solar mass of a neutron star can range from 1.5 to 3.0 solar masses.
After a high-mass star explodes as supernova and leaves a core behind, the core would become a neutron star or a black hole. If the core is less than 3 solar masses, it would become a neutron star; if the mass exceeds 3 solar masses, the core would continue to collapse, forming a black hole.
A star must have at least 8 times the mass of the Sun in order to undergo a supernova explosion at the end of its life cycle. This is because stars need to have enough mass to generate the tremendous pressure and temperature required for a supernova to occur.
The factor that determines whether a neutron star or a black hole forms after a supernova explosion is the mass of the collapsing core of the star. If the core's mass is between about 1.4 and 3 times the mass of the sun, a neutron star is formed. If the core's mass exceeds about 3 solar masses, a black hole is likely to form.
Depending on the mass of the original star it will either end up as a neutron star (< 20 solar masses) or a black hole (> 20 solar masses).
If the core of a supernova explosion contains three or more solar masses of matter, it will most likely become a black hole. The gravitational force is so strong that the core collapses into a singularity, forming a black hole.
A lot of mass. Generally for a type II supernova more that 9 solar masses. See related question.
A Type II supernova occurs when a massive star with about 8-20 times the mass of the Sun exhausts its nuclear fuel and collapses under its own gravity. The mass required for a Type II supernova is typically around 8 solar masses.
A supernova may have been a supergiant star at one time, but it did not have to be. Any star with a mass greater than 3 times our sun will supernova. There are millions of stars having masses between 3 solar masses and supergiant mass for every single supergiant star... and every one will supernova when it dies.
Supernova. Stars below nine solar masses become white dwarfs, though stars more than 1.4 solar masses (Chandrasekhar limit) should nova during their life time. http://en.wikipedia.org/wiki/Supernova http://en.wikipedia.org/wiki/Chandrasekhar_limit
Yes, eventually they all burn out. Stars with less than three solar masses will become a neutron star. These are extremely, extremely dense forms. Any larger and the star will become a black hole after going supernova.
The amount of mass in the remnant. If the mass of the remnant exceeds 3 solar masses then it will become a black hole.
If you mean after a supernova it could be a neutron star if it's less than 3 solar masses
Following certain types of Supernova events there can often be a gravitational collapse of massive stars and this can result in the stellar remnant becoming a neutron star. Based on the Tolman-Oppenheimer-Volkoff limit the solar mass of a neutron star can range from 1.5 to 3.0 solar masses.
It is postulated that a supernova explosion was the catalyst which formed our Solar System.
After a high-mass star explodes as supernova and leaves a core behind, the core would become a neutron star or a black hole. If the core is less than 3 solar masses, it would become a neutron star; if the mass exceeds 3 solar masses, the core would continue to collapse, forming a black hole.