Half of the original sample of a radio isotope remains after a half-life period. After two half-life periods, one-fourth of the radio isotope remains.
halflife
If I take a radioactive sample of 400 moles of an unknown substance and let it decay to the point of three half-lives I would have 50 moles left of the sample. 1/2 of what is left will decay in the next half-life. At the end of that half-life I will have 25 moles left of the unknown substance or 4/25.
The length of time required for half of a sample of radioactive material to decay
After 50 years, approximately 50% of tritium will remain undecayed in a sample. Tritium has a half-life of about 12.3 years, which means that the amount of undecayed tritium decreases by half every 12.3 years.
30,000
It tells what fraction of a radioactive sample remains after a certain length of time.
It is 1/8 .
1/8 of the original amount remains.
After three half-lives, only 1/8 (or 12.5%) of the original radioactive sample remains. This is because each half-life reduces the amount of radioactive material by half, so after three half-lives, you would have (1/2) * (1/2) * (1/2) = 1/8 of the original sample remaining.
After 5 half-lives, 3.125% (or 1/2^5) of a radioactive sample remains. Each half-life reduces the sample by half, so after 5 half-lives, there is only a small fraction of the original sample remaining.
halflife
An eighth remains.
If I take a radioactive sample of 400 moles of an unknown substance and let it decay to the point of three half-lives I would have 50 moles left of the sample. 1/2 of what is left will decay in the next half-life. At the end of that half-life I will have 25 moles left of the unknown substance or 4/25.
30,000
1.5% remains after 43.2 seconds.
Approx 1/8 will remain.
Not sure what you mean by "had-lives". After 3 half lives, approx 1/8 would remain.