what happens if the kinectic energy if the mass doubled
If kinetic energy is doubled, the momentum will remain the same. Kinetic energy and momentum are related, but momentum depends on mass and velocity while kinetic energy depends on mass and velocity squared. Therefore, doubling kinetic energy will not affect momentum.
The speed of an object does not change if only its mass is doubled. The speed of an object is determined by its velocity, which is independent of its mass. However, doubling the mass of an object will affect its momentum and kinetic energy.
When you increase the speed while keeping mass constant, the kinetic energy increases. Kinetic energy is directly proportional to the square of the velocity, so as speed increases, kinetic energy increases even more rapidly.
Kinetic energy of a mass is directly proportional to two variables: its mass and speed. Many mistake kinetic energy as being proportional to mass and velocity; it is, in fact, mass and speed. (With all technicalities aside, the speed is the factor that matters in computing kinetic energy of an object or a mass). Kinetic Energy = 0.5mv2 (m = mass and v = speed of the mass) Therefore, if the speed of the object increases, the kinetic energy increases. If the speed of the object decreases, the kinetic energy decreases. Similarly, if the mass of the object increases while traveling, its kinetic energy increases. If the mass of the object decreases, the kinetic energy decreases. All has to do with the directly proportional relationship between the two variables and the kinetic energy.
kinetic energy, K.E = 1/2 mv^2 that is, it is directly proportional to mass, assuming velocity to be constant and is directly proportional to square of velocity assuming mass to be constant.
If kinetic energy is doubled, the momentum will remain the same. Kinetic energy and momentum are related, but momentum depends on mass and velocity while kinetic energy depends on mass and velocity squared. Therefore, doubling kinetic energy will not affect momentum.
If the mass is doubled, the kinetic energy will also double, assuming the velocity remains constant. Kinetic energy is directly proportional to the mass of an object, so increasing the mass will result in a proportional increase in kinetic energy.
the defining equation for kinetic energy= 1/2 mv2therefore kinetic energy is directly proportional to mass or as kinetic energy increases, mass increases proportionally (and vice versa).therefore if mass is doubled, the kinetic energy is also doubled.
If the mass of the object is doubled but the velocity remains the same, the kinetic energy of the object will also double. Kinetic energy is directly proportional to the mass of the object, so doubling the mass will result in a doubling of kinetic energy.
If speed/velocity is doubled and mass remains constant, then kinetic energy becomes quadrupled.
It becomes less since the weight is doubled so it becomes harder for the energy to push it
Kinetic Energy = (1/2)*(mass)*(velocity)2 If you double the mass, then the kinetic energy will double If you double the velocity, the kinetic energy will increase by a factor of 4
KE = (mass * velocity^2 ) /2 if the mass if 2X, the KE will double too.
Twice the mass --> twice the kinetic energy.
Kinetic energy will increase by a factor of four. Kinetic energy is proportional to the square of velocity, so if velocity is doubled, kinetic energy increases by four times. Since mass remains the same, there is no impact on kinetic energy from changes in mass.
Kinetic energy is determined by mass and velocity. The velocity is halved if you double the original mass, so the kinetic energy stays the same (unless the mass added has the same kinetic energy in the observer's reference frame as the original mass).
Kinetic Energy increases as velocity increases. Kinetic Energy = 1/2 * Mass * Velocity2