If the mass is doubled, the kinetic energy will also double, assuming the velocity remains constant. Kinetic energy is directly proportional to the mass of an object, so increasing the mass will result in a proportional increase in kinetic energy.
If the mass of the object is doubled but the velocity remains the same, the kinetic energy of the object will also double. Kinetic energy is directly proportional to the mass of the object, so doubling the mass will result in a doubling of kinetic energy.
If speed/velocity is doubled and mass remains constant, then kinetic energy becomes quadrupled.
Kinetic Energy = (1/2)*(mass)*(velocity)2 If you double the mass, then the kinetic energy will double If you double the velocity, the kinetic energy will increase by a factor of 4
KE = (mass * velocity^2 ) /2 if the mass if 2X, the KE will double too.
Kinetic energy will increase by a factor of four. Kinetic energy is proportional to the square of velocity, so if velocity is doubled, kinetic energy increases by four times. Since mass remains the same, there is no impact on kinetic energy from changes in mass.
the defining equation for kinetic energy= 1/2 mv2therefore kinetic energy is directly proportional to mass or as kinetic energy increases, mass increases proportionally (and vice versa).therefore if mass is doubled, the kinetic energy is also doubled.
If mass is doubled while velocity remains constant, the kinetic energy will also double since kinetic energy is directly proportional to the mass. This is because kinetic energy is calculated using the formula KE = 0.5 * mass * velocity^2.
If the mass of the object is doubled but the velocity remains the same, the kinetic energy of the object will also double. Kinetic energy is directly proportional to the mass of the object, so doubling the mass will result in a doubling of kinetic energy.
If speed/velocity is doubled and mass remains constant, then kinetic energy becomes quadrupled.
If kinetic energy is doubled, the momentum will remain the same. Kinetic energy and momentum are related, but momentum depends on mass and velocity while kinetic energy depends on mass and velocity squared. Therefore, doubling kinetic energy will not affect momentum.
Kinetic Energy = (1/2)*(mass)*(velocity)2 If you double the mass, then the kinetic energy will double If you double the velocity, the kinetic energy will increase by a factor of 4
KE = (mass * velocity^2 ) /2 if the mass if 2X, the KE will double too.
Twice the mass --> twice the kinetic energy.
Kinetic energy will increase by a factor of four. Kinetic energy is proportional to the square of velocity, so if velocity is doubled, kinetic energy increases by four times. Since mass remains the same, there is no impact on kinetic energy from changes in mass.
Kinetic energy is directly proportional to the square of the momentum. Therefore, if the momentum is doubled, the kinetic energy will increase by a factor of four.
The speed of an object does not change if only its mass is doubled. The speed of an object is determined by its velocity, which is independent of its mass. However, doubling the mass of an object will affect its momentum and kinetic energy.
If the velocity of a body is doubled, its kinetic energy will increase by a factor of four. This relationship is because kinetic energy is proportional to the square of the velocity. Additionally, the momentum of the body will also double.