the bacteria will produce
some human products
The enzyme can denature and will not function because it is no longer in the proper shape.
The enzyme in human saliva is Amylase.
This is essentially because bacterial cells and human cells are very different. Both bacterial and human cells use chemicals called enzymes to build their walls. Penicillin is the right chemical "shape" to chemically stick to part of the bacterial enzyme. When it does this, it stops the bacterial enzyme from working properly and this makes the bacterial cell walls weak. The weakened cell wall cannot withstand the outside pressure, it breaks up and the bacterial cell dies. Human cells are made by different types of enzymes with a different chemical shape that penecillin is unable to stick to so it cant stop the human enzymes from working. The human cell walls are thus unaffected by it and they remain strong.
1. Scientists remove plasmids, small rings of DNA, from bacterial cells. 2. An enzyme cuts open the plasmid DNA. The same enzyme removes the human insulin gene from its chromosome. 3. The human insulin gene attaches the open ends of the plasmid to form a closed ring. 4. Some bacterial cells take up the plasmids that have the insulin gene. 5. When cells reproduce, the news cells will contain copies of the engineered plasmid. The foreign gene directs the cell to produce human insulin.
the bacterial cell reproduces the bacterial chromosome that the human gene codes for.
The insertion of a human DNA fragment into a bacterial cell could potentially enable the bacterial cell to produce a human protein or enzyme. This technique is commonly used in biotechnology to produce pharmaceuticals or study gene function.
The enzyme can denature and will not function because it is no longer in the proper shape.
The enzyme in human saliva is Amylase.
This is essentially because bacterial cells and human cells are very different. Both bacterial and human cells use chemicals called enzymes to build their walls. Penicillin is the right chemical "shape" to chemically stick to part of the bacterial enzyme. When it does this, it stops the bacterial enzyme from working properly and this makes the bacterial cell walls weak. The weakened cell wall cannot withstand the outside pressure, it breaks up and the bacterial cell dies. Human cells are made by different types of enzymes with a different chemical shape that penecillin is unable to stick to so it cant stop the human enzymes from working. The human cell walls are thus unaffected by it and they remain strong.
the bacterial cell reproduces the bacterial chromosome that the human gene codes for.
1. Scientists remove plasmids, small rings of DNA, from bacterial cells. 2. An enzyme cuts open the plasmid DNA. The same enzyme removes the human insulin gene from its chromosome. 3. The human insulin gene attaches the open ends of the plasmid to form a closed ring. 4. Some bacterial cells take up the plasmids that have the insulin gene. 5. When cells reproduce, the news cells will contain copies of the engineered plasmid. The foreign gene directs the cell to produce human insulin.
it has more human cells actually the human body has more bacterial cells. Although it may seem more likely that the human body would have more human cells than bacterial cells. -Vasillisa
The enzyme that breaks down starches in the human body is called amylase.
That they have both DNA Bacterial DNA is a (closed) circle, those of human is lineair (straight) if you stretch it. Bacterial DNA does not have Proteines, Human DNA has Proteines. Bacteria have also RNA The DNA of bacteria is easy to reach , those of human not.
The smallest enzyme present in the human body is probably Triosephosphate isomerase.
Increased temperature, presence of suitable substrates, and optimal pH levels are conditions that can boost enzymatic activity in a bacterial cell that thrives in the human body. These factors can enhance enzyme-substrate interactions and facilitate the biological processes necessary for the bacterium's survival and growth in the human host.
The rate of reaction of a human enzyme typically increases as the temperature rises from 10 to 30 degrees Celsius due to increased kinetic energy, leading to more collisions between enzyme and substrate molecules. However, beyond the optimum temperature range, denaturation may occur, causing a decrease in enzyme activity.