answersLogoWhite

0

1/2500 sec is the absolute refractory period.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

Does action potential involve the influx of negative ions to depolarize the membrane?

No. The negative ions stay within the cell (neuron).An action potential begins (rising phase) with an influx of sodium, a positive ion or cation. The rising phase ends (falling phase) with an efflux of positive ions (potassium). The membrane potential is stabilized again with the action of the ATP dependent sodium-potassium pump.


What are the Stages of nerve impulses?

The action potential has 5 main phases:1) stimulation/rising phase - depolarization caused by influx of sodium ions at the axon hillock; potential increases from a resting potential of -70 mV2) peak phase - depolarization and membrane potential reaches a peak, with sodium channels open maximally, at about +40 mV3) falling phase - potassium channels open in response, causing a subsequent reduction in membrane potential, and the neuron begins to repolarize4) hyperpolarization/undershoot phase - more potassium channels stay open after sodium channels close, causing a hyperpolarization of the neuronal membrane, bringing the potential down below its initial resting potential (below -70 mV)5) refractory phase - potassium channels begin to close, allowing the membrane potential to revert back to the resting potential of -70 mV; during this phase, the probability of the nerve being able to refire is extremely low, thus allowing for a delay between action potentials


Do the action potential travel along the axon of a neuron?

fig. 1Formation of an action potentialThe formation of an action potential can be divided into five steps. (1) A stimulus from a sensory cell or another neuron causes the target cell to depolarize toward the threshold potential. (2) If the threshold of excitation is reached, all Na+ channels open and the membrane depolarizes. (3) At the peak action potential, K+ channels open and K+ begins to leave the cell. At the same time, Na+ channels close. (4) The membrane becomes hyperpolarized as K+ ions continue to leave the cell. The hyperpolarized membrane is in a refractory period and cannot fire. (5) The K+ channels close and the Na+/K+ transporter restores the resting potential.


The start of an action potential?

The action potential begins when the neuron is stimulated and reaches a certain threshold of excitation. This causes voltage-gated ion channels to open, allowing a rapid influx of sodium ions into the neuron, leading to depolarization. This depolarization triggers a cascading effect along the neuron's membrane, resulting in the propagation of the action potential.


Almost as soon as the depolarization wave begins a repolarization wave follows it across the membrane this occurs as?

Almost as soon as the depolarization wave begins, voltage-gated potassium channels open in response to the increase in membrane potential, allowing potassium ions to move out of the cell. This efflux of potassium ions causes repolarization of the cell membrane by restoring the negative resting membrane potential.

Related Questions

Does action potential involve the influx of negative ions to depolarize the membrane?

No. The negative ions stay within the cell (neuron).An action potential begins (rising phase) with an influx of sodium, a positive ion or cation. The rising phase ends (falling phase) with an efflux of positive ions (potassium). The membrane potential is stabilized again with the action of the ATP dependent sodium-potassium pump.


For a brief time after an action potential begins a muscle fiber or neuron cannot generate another action potential This time is called the?

five second silence


What are the Stages of nerve impulses?

The action potential has 5 main phases:1) stimulation/rising phase - depolarization caused by influx of sodium ions at the axon hillock; potential increases from a resting potential of -70 mV2) peak phase - depolarization and membrane potential reaches a peak, with sodium channels open maximally, at about +40 mV3) falling phase - potassium channels open in response, causing a subsequent reduction in membrane potential, and the neuron begins to repolarize4) hyperpolarization/undershoot phase - more potassium channels stay open after sodium channels close, causing a hyperpolarization of the neuronal membrane, bringing the potential down below its initial resting potential (below -70 mV)5) refractory phase - potassium channels begin to close, allowing the membrane potential to revert back to the resting potential of -70 mV; during this phase, the probability of the nerve being able to refire is extremely low, thus allowing for a delay between action potentials


Do the action potential travel along the axon of a neuron?

fig. 1Formation of an action potentialThe formation of an action potential can be divided into five steps. (1) A stimulus from a sensory cell or another neuron causes the target cell to depolarize toward the threshold potential. (2) If the threshold of excitation is reached, all Na+ channels open and the membrane depolarizes. (3) At the peak action potential, K+ channels open and K+ begins to leave the cell. At the same time, Na+ channels close. (4) The membrane becomes hyperpolarized as K+ ions continue to leave the cell. The hyperpolarized membrane is in a refractory period and cannot fire. (5) The K+ channels close and the Na+/K+ transporter restores the resting potential.


Each normal heartbeat in initiated by the?

Each heartbeat begins with an action potential generated at the sinoatrial node or simple call the SAnode.


The start of an action potential?

The action potential begins when the neuron is stimulated and reaches a certain threshold of excitation. This causes voltage-gated ion channels to open, allowing a rapid influx of sodium ions into the neuron, leading to depolarization. This depolarization triggers a cascading effect along the neuron's membrane, resulting in the propagation of the action potential.


Action that begins with i?

intercorse.(;


Almost as soon as the depolarization wave begins a repolarization wave follows it across the membrane this occurs as?

Almost as soon as the depolarization wave begins, voltage-gated potassium channels open in response to the increase in membrane potential, allowing potassium ions to move out of the cell. This efflux of potassium ions causes repolarization of the cell membrane by restoring the negative resting membrane potential.


What happens in the time and space once an action potential begins?

Once an action potential begins, there is a rapid depolarization of the neuron's membrane due to the influx of sodium ions (Na+) through voltage-gated sodium channels. This is followed by repolarization as potassium ions (K+) exit the cell, restoring the membrane potential. The action potential travels along the axon, propagating in a wave-like manner through the opening of adjacent ion channels, while the surrounding areas temporarily enter a refractory period, preventing immediate re-excitation. This process facilitates the transmission of electrical signals along the neuron and ultimately leads to neurotransmitter release at the synapse.


What is a action that starts with x?

X-ray is an action. It begins with the letter x.


What is an action verb that begins with an i?

Identify and install are action verbs. Implement and injure are verbs.


How kinetic energy can be transformed into potential energy?

Potential energy is sometimes called the energy of position. This means that it has the ability (potential) to become kinetic energy. A Bowling ball that is held over your head has potential energy. As soon as it is dropped and begins moving, the potential energy begins transforming into kinetic energy.