answersLogoWhite

0

It is where the magnetic field have the same magnitude and direction in a specific region.

Hope that helps

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

If a magnetic dipole is placed in a magnetic field the dipole is found to have both rotational and translational motion.what would you infer about the magnetic field?

If a magnetic dipole placed in a magnetic field exhibits both rotational and translational motion, it suggests that the magnetic field is not uniform. A non-uniform magnetic field will exert torque on the magnetic dipole, causing it to rotate, and may also impart a force causing translational motion. These observations can help characterize the spatial variation of the magnetic field.


Definition of uniform-magnetic field?

A uniform magnetic field is a magnetic field that has the same strength and direction at all points in a given region of space. It has constant magnetic flux density and does not vary in magnitude or direction within the specified area. Uniform magnetic fields are often used in scientific experiments and applications to provide consistent and predictable conditions for studying magnetic effects.


When a charged particle enters in a uniform magnetic field then its kinetic energy ..becomes?

When a charged particle enters a uniform magnetic field, its kinetic energy remains constant. This is because the magnetic field exerts a force perpendicular to the particle's velocity, which changes the direction of the particle's motion but does not work on it. As a result, the speed of the particle—and thus its kinetic energy—remains unchanged, leading to circular or helical motion.


Why will the dip not be the same everywhere in the world?

The dip of the Earth's magnetic field varies because the field is not perfectly uniform and is influenced by the local geology of each region. Changes in the magnetic properties of the Earth's crust, as well as the distribution of magnetic minerals, can cause variations in the magnetic field strength and direction, resulting in different dip angles at different locations around the world.


Uniform electric and magnetic fields are acting along the same direction in certain regionIf electron is projected along direction of fields with certain velocity then wats the motion of electron?

When an electron is projected along the direction of uniform electric and magnetic fields, it experiences a force due to the electric field, which accelerates it in the direction of the field. The magnetic field, however, exerts a force that is perpendicular to both its velocity and the magnetic field, causing the electron to undergo circular motion. The net effect is that the electron will spiral along the direction of the fields, with its speed increasing due to the electric field while also being influenced by the magnetic field's perpendicular force. Ultimately, the electron's trajectory will be a helical path along the direction of the fields.

Related Questions

What is uniform and non uniform magnetic field?

A uniform magnetic field has constant strength and direction throughout the region. A non-uniform magnetic field varies in strength or direction in different parts of the region. Uniform magnetic fields are simpler to work with mathematically, while non-uniform magnetic fields can lead to more complex behaviors in magnetic materials.


Is the magnetic field inside a solenoid uniform?

Yes, the magnetic field inside a solenoid is generally uniform.


What do you mean by uniform and non uniform magnetic fields?

A uniform magnetic field has the same strength and direction at all points in space. In contrast, a non-uniform magnetic field is one where the strength and/or direction varies from point to point. Uniform magnetic fields are often created in laboratory settings, while non-uniform magnetic fields can occur naturally or in more complex magnetic systems.


What is the formula for a uniform magnetic field?

The formula for a uniform magnetic field is B I / (2 r), where B is the magnetic field strength, is the permeability of free space, I is the current, and r is the distance from the current.


How is a uniform magnetic field represented?

A uniform magnetic field can be represented by field lines that are parallel and evenly spaced. Mathematically, it is represented by a vector field where the magnetic field strength (B) is constant in both magnitude and direction throughout the region of interest.


What type of magnetic field lines represent uniform magnetic field?

straight parallel lines


Is the field uniform inside a long solenoid?

Yes, the magnetic field inside a long solenoid is generally uniform.


What if a magnetic needle is kept in a non uniform magnetic field?

A magnetic needle kept in uniform magnetic field will experience zero net force but non-zero net torque........Since the magnetic lines are uniform,the force acting on each end of the needlewill be equal and opposite.So it will cancel each other resulting zero net force.


What is the magnitude of the magnetic flux through this circle due to a uniform magnetic field?

The magnitude of the magnetic flux through a circle due to a uniform magnetic field depends on the strength of the magnetic field, the area of the circle, and the angle between the magnetic field and the normal to the circle. The formula for magnetic flux is given by Φ = BAcos(θ), where B is the magnetic field strength, A is the area of the circle, and θ is the angle between the magnetic field and the normal to the circle.


What is the factors on which the induced EMF in a coil rotating in a uniform magnetic field depends?

The induced EMF in a coil rotating in a uniform magnetic field depends on the strength of the magnetic field, the number of turns in the coil, the area of the coil, the speed of rotation, and the angle between the magnetic field and the plane of the coil.


Uniform And Non-Uniform Magnetic field And Calculation of its strength?

The answer depends on the source of the magnetic field. For instance, the magnetic field due to a current carrying wire is given by the formula mu*I/(2*pi*r). Magnetic fields follow the principle super position so they can be added up no problem.


How do you produce a uniform magnetic field using a solenoid?

A uniform magnetic field can be produced using a solenoid by ensuring the solenoid has a tightly wound coil of wire with a constant current flowing through it. The magnetic field inside the solenoid will be parallel and uniform along the central axis of the solenoid. Placing a ferromagnetic core inside the solenoid can help enhance and concentrate the magnetic field.