Net inputs: glucose, ADP, NAD+
Net outputs: Pyruvate, NADH, ATP
The electron transport chain is also known as the respiratory chain.
Mitochondria
Yes, oxidative phosphorylation is a vital part of cellular metabolism as it produces the majority of ATP in aerobic organisms. ATP is the primary energy source for cellular processes, making oxidative phosphorylation crucial for overall metabolism function.
Oxidative Phosphorylation [Chemiosmosis and ETC]
Oxidative phosphorylation is not typically considered a reversible reaction in the context of cellular respiration because it involves the synthesis of ATP from ADP and inorganic phosphate. While some of the individual reactions within the process may be reversible under certain conditions, the overall process of oxidative phosphorylation is a unidirectional energy-producing pathway in which ATP is generated.
The electron transport chain is also known as the respiratory chain.
The opposite of oxidative phosphorylation is not a specific biological process, as it refers to the metabolic pathway that occurs in mitochondria to generate ATP from ADP using oxygen. However, an anaerobic process like fermentation can be considered as an alternative to oxidative phosphorylation.
Mitochondria
Yes, oxidative phosphorylation is a vital part of cellular metabolism as it produces the majority of ATP in aerobic organisms. ATP is the primary energy source for cellular processes, making oxidative phosphorylation crucial for overall metabolism function.
Another name for oxidative phosphorylation is electron transport chain.
Yes, Wikipedia does offer in depth information on Oxidative Phosphorylation. They break it down into many parts and have several diagrams to explain what it is.
ATP in fermentation is typically produced by substrate-level phosphorylation, which involves the direct transfer of a phosphate group to ADP from a phosphorylated substrate. Oxidative phosphorylation, which involves the use of an electron transport chain to produce ATP, is not generally involved in fermentation.
Cell membrane
Oxidative phosphorylation occurs in order to produce energy in the form of ATP. It occurs after chemiosmosis, in which a concentration gradient of hydrogen ions is created in the mitochondria between the matrix and the intermembrane space. As the hydrogen ions flow across this gradient, ADP and Pi are combined and ATP is produced. Hope this helps!
Because it is oxidative and depends mainly on oxidative phosphorylation for energy.
Photophosphorylation is most similar to oxidative phosphorylation in that it involves the production of ATP through a series of redox reactions that generate a proton gradient across a membrane. However, in photophosphorylation, the energy for driving the process is derived from light instead of the oxidation of organic molecules.
Oxidative phosphorylation is ATP synthesis driven by electron transfer to oxygen and photophosphorylation is ATP synthesis driven by light. Oxidative phosphorylation is the culmination of energy-yielding metabolism in aerobic organisms and photophosphorylation is the means by which photosynthetic organisms capture the energy of sunlight, the ultimate source of energy in the biosphere.