The synaptic bulb is found at the end of axon terminals in neurons. It is the structure responsible for releasing neurotransmitters to communicate with other neurons or target cells at a synapse.
Synapses
Post-synaptic cells can vary widely depending on their location and function in the nervous system. Common types include neurons, which can receive signals from other neurons, and glial cells, such as astrocytes, which can modulate synaptic activity and support neuronal function. Additionally, muscle cells (myocytes) can serve as post-synaptic targets in neuromuscular junctions, responding to signals from motor neurons. Each type plays a distinct role in processing and responding to neurotransmitter signals.
Axon terminals, also called synaptic terminals or terminal boutons, are found at the end of each axon. These structures are responsible for transmitting signals to the dendrites of neighboring neurons or to a target cell. At the axon terminals, neurotransmitters are released into the synaptic cleft to facilitate communication between neurons.
functional connection between two neurons is the transmission of electrical signals from one neuron to another through a synapse. When an electrical impulse reaches the axon terminal of the pre-synaptic neuron, it triggers the release of neurotransmitters into the synaptic cleft. These neurotransmitters then bind to receptors on the post-synaptic neuron, allowing the electrical signal to be transmitted and continue the communication between neurons.
The small space separating pre and post-synaptic neurons is called the synaptic cleft. This cleft allows for the transmission of chemical signals, known as neurotransmitters, from the pre-synaptic neuron to the post-synaptic neuron to occur. The neurotransmitters are released by the pre-synaptic neuron and bind to receptors on the post-synaptic neuron to transmit the signal.
Post synaptic neurons
Synaptic vesicles are found in the axon terminals of nerve cells.
The synaptic bulb is found at the end of axon terminals in neurons. It is the structure responsible for releasing neurotransmitters to communicate with other neurons or target cells at a synapse.
Synapses
Post-synaptic cells can vary widely depending on their location and function in the nervous system. Common types include neurons, which can receive signals from other neurons, and glial cells, such as astrocytes, which can modulate synaptic activity and support neuronal function. Additionally, muscle cells (myocytes) can serve as post-synaptic targets in neuromuscular junctions, responding to signals from motor neurons. Each type plays a distinct role in processing and responding to neurotransmitter signals.
Synaptic gaps are the spaces between neurons.
Neurotransmitters are stored in synaptic vesicles located at the terminals of presynaptic neurons. When an action potential reaches the terminal, these vesicles release neurotransmitters into the synaptic cleft to facilitate communication between neurons.
Yes. A synapse by definition is the space (gap) between one neurons terminal buton and another neurons dendrites. So, the neuron with the terminal buton end is known as the pre-synaptic neuron and the neuron after the synapse is known as the post-synaptic neuron.
Synapses occur between two neurons. Electrical activitiy in the pre-synaptic neuron influences the post-synaptic neuron. There are two types of synapses in the body: Electrical and chemical. Electrical synapses occur in pre and post synaptic neurons that are joined via gap junctions. Currents from action potentials flow across the junction through channels called connexons. This current will depolarize the membrane of the post synaptic neuron to threshold, which will continue the action potential in the cell. Electrical synapses are fast and bidirectional. However, they are mainly found in cardiac and smooth muscles, and not in the mammalian nervous system.Chemical synapses use neurotransmitters. Depolarization occurs in the pre-synaptic neuron and calcium ions rush in. The calcium ions activate neurotransmitter release into the synaptic cleft. The neurotransmitters reach the post-synaptic neuron and cause action potentials to develop.Note: this can go into much more detail
Axon terminals, also called synaptic terminals or terminal boutons, are found at the end of each axon. These structures are responsible for transmitting signals to the dendrites of neighboring neurons or to a target cell. At the axon terminals, neurotransmitters are released into the synaptic cleft to facilitate communication between neurons.
Synaptic vesicles in the axon terminals of neurons contain acetylcholine. Acetylcholine is a neurotransmitter that is released from these vesicles into the synaptic cleft to transmit signals to target cells or other neurons.