answersLogoWhite

0

Synaptic fatigue, or short-term synaptic depression, is an activity-dependent form of short-term plasticity that affects neuronal efficacy and results in the temporary inability to fire and therefore transmit an input signal. It is thought to be a form of negative feedback in order to physiologically control particular forms of nervous system activity.[1] Synaptic fatigue involves the temporary inhibition of neurons due to constant and persistent stimulation, where the fatigue effects are generally dependent upon the type and frequency of stimuli present. The underlying cause of fatigue on the synapse is temporary depletion of synaptic vesicles that house neurotransmitters in the presynaptic cell. The neurotransmitters are released to propagate the signal to the postsynaptic cell. It has also been hypothesized that synaptic fatigue could be a result of postsynaptic receptor desensitization or changes in postsynaptic passive conductance, but recent evidence has suggested that it is primarily a presynaptic phenomenon.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Natural Sciences

What causes synaptic fatigue?

Synaptic fatigue occurs when a synapse becomes less effective at transmitting signals due to prolonged or excessive stimulation. This is primarily caused by the depletion of neurotransmitter vesicles, reduced availability of calcium ions, and the desensitization of receptors. As a result, the synaptic response diminishes, leading to a temporary reduction in synaptic efficacy. This phenomenon is often observed in high-frequency neuronal activity.


The narrow space between the synaptic terminal and the muscle fiber is the?

synaptic cleft, where neurotransmitters are released by the synaptic terminal and bind to receptors on the muscle fiber to trigger a muscle contraction.


What causes the synaptic delay?

The cause of synaptic delay is attributed mainly to the time needed for the synaptic vesicles to release neurotransmitter into the synaptic cleft. While it can be considered a combination of binding to the presynaptic membrane (which is relatively a transient process) and subsequent exocytosis of the neurotransmitter, the main factor is release. Additionally, it does take a very short period of time for the neurotransmitter to diffuse across the synaptic cleft and bind to to its receptors on the post-synaptic membrane.


What are The chemicals that bridge the synaptic gap?

Chemicals that bridge the synaptic gap are called neurotransmitters.


What is Synaptic capacity?

Synaptic capacity refers to the maximum number of synaptic connections that can be formed between neurons in the brain. It is a measure of the brain's ability to adapt, learn, and store information. Increases in synaptic capacity are associated with learning and memory formation.

Related Questions

The are sack-like structures found inside the synaptic knob containing chemicals?

The sack-like structures inside the synaptic knob containing chemicals are called synaptic vesicles. These vesicles store and release neurotransmitters, which are chemical messengers that transmit signals between neurons. When an action potential reaches the synaptic knob, it triggers the release of neurotransmitters from the synaptic vesicles into the synaptic cleft.


What is the small space separating pre and post-synaptic neurons?

The small space separating pre and post-synaptic neurons is called the synaptic cleft. This cleft allows for the transmission of chemical signals, known as neurotransmitters, from the pre-synaptic neuron to the post-synaptic neuron to occur. The neurotransmitters are released by the pre-synaptic neuron and bind to receptors on the post-synaptic neuron to transmit the signal.


Is synaptic transmission always from pre to post synaptic?

Yes


What are synaptic gaps?

Synaptic gaps are the spaces between neurons.


The narrow space between the synaptic terminal and the muscle fiber is the?

synaptic cleft, where neurotransmitters are released by the synaptic terminal and bind to receptors on the muscle fiber to trigger a muscle contraction.


When was Synaptic - software - created?

Synaptic - software - was created on 2001-11-13.


What are the principles of synaptic transmission?

Calcium ions enter the presynaptic neuron resulting in the release of neurotransmitter from the per-synaptic membrane. The neurotransmitter diffuses across the synaptic cleft, fusing with the receptors of the post-synaptic membrane. This changes the sodium channels to open and sodium ions will to flow into the post-synaptic neuron, depolarizing the post-synaptic membrane. This initiates an action potential. After the post-synaptic neuron has been affected, the neurotransmitter is removed by a type of enzyme called cholinesterase. The inactivated neurotransmitter then returns to the pre-synaptic neuron.


What causes the synaptic delay?

The cause of synaptic delay is attributed mainly to the time needed for the synaptic vesicles to release neurotransmitter into the synaptic cleft. While it can be considered a combination of binding to the presynaptic membrane (which is relatively a transient process) and subsequent exocytosis of the neurotransmitter, the main factor is release. Additionally, it does take a very short period of time for the neurotransmitter to diffuse across the synaptic cleft and bind to to its receptors on the post-synaptic membrane.


What does the word synaptic mean?

The word synaptic is an adjective which means, pertaining to the synapses. So, I could describe dopamine as a chemical that has a synaptic function, as a neurotransmitter.


What are the tiny sacs found within the terminal button which release chemicals into the synapse?

The tiny sacs in the synaptic knob are known as synaptic vessels. The synaptic vessels release chemicals into the bloodstream with each synapse.


The tiny space between the axon terminal and the dendrite of another neuron is called the?

Synaptic Cleft.


What are The chemicals that bridge the synaptic gap?

Chemicals that bridge the synaptic gap are called neurotransmitters.