old is broken but new is not
Two strands of DNA are used to make complementary strands of DNA. One original strand serves as a template for the synthesis of a new strand, resulting in a double-stranded DNA molecule with base pairing between the original and newly synthesized strands.
The site where the old DNA strands separate and new DNA strands are synthesized is called the replication fork. This is where the enzyme DNA polymerase adds nucleotides to the growing DNA strand.
If the DNA molecule is undergoing transcription, then mRNA nucleotides will be forming along the anti-sense strand of DNA. If the DNA molecule is undergoing replication, new DNA nucleotides will be forming along both original strands of DNA.
During cell division, the two new DNA strands (replicated DNA) are separated between the two new cells to ensure each cell receives a complete set of genetic information. This process occurs during the mitotic phase of cell division, where the replicated DNA is divided equally between the daughter cells to maintain genetic continuity.
Enzymes called helicases are responsible for unzipping the DNA double helix so that it can be duplicated. Helicases break the hydrogen bonds between the paired nucleotides of the DNA strands, allowing the strands to separate and serve as templates for the synthesis of new DNA strands during replication.
Helicase is an enzyme that unwinds the double-stranded DNA during replication, while polymerase is an enzyme that synthesizes new DNA strands by adding nucleotides to the template strand. In simpler terms, helicase unzips the DNA, while polymerase builds new strands.
Two strands of DNA are used to make complementary strands of DNA. One original strand serves as a template for the synthesis of a new strand, resulting in a double-stranded DNA molecule with base pairing between the original and newly synthesized strands.
The site where the old DNA strands separate and new DNA strands are synthesized is called the replication fork. This is where the enzyme DNA polymerase adds nucleotides to the growing DNA strand.
Replication forks tend to unwind the DNA helix, separate the double strands, and synthesize new strands of DNA in opposite directions. They are formed during DNA replication and move along the DNA template strands as replication progresses.
DNA Polymerase III is responsible for adding new nucleotides to the strand being synthesised. Also involved in DNA replication are DNA Polymerase I which replaces primers with nucleotides, and DNA Ligase which joins fragments of DNA together.
If the DNA molecule is undergoing transcription, then mRNA nucleotides will be forming along the anti-sense strand of DNA. If the DNA molecule is undergoing replication, new DNA nucleotides will be forming along both original strands of DNA.
Two new strands of DNA. <--- Gradpoint/NovaNet
During cell division, the two new DNA strands (replicated DNA) are separated between the two new cells to ensure each cell receives a complete set of genetic information. This process occurs during the mitotic phase of cell division, where the replicated DNA is divided equally between the daughter cells to maintain genetic continuity.
Enzymes called helicases are responsible for unzipping the DNA double helix so that it can be duplicated. Helicases break the hydrogen bonds between the paired nucleotides of the DNA strands, allowing the strands to separate and serve as templates for the synthesis of new DNA strands during replication.
Two new DNA chains are formed at the end of DNA replication, both identical in sequence to the template (or parent) chain. These chains are composed of 2 complimentary strands. It is important to note that of the newly formed DNA chains, one strand is the same as the template strand and the other one is a newly synthesized one.
The helicase in a way unzipps the wound DNA. DNA Polymerase then matches the nucleotide bases with free floating one so that A matches with T (or in RNA U) and G matches with C. Creating two new strands of DNA and completing DNA replication.
DNA ligase