A high mass star will eventually undergo a supernova explosion, leaving behind a dense core known as a neutron star or collapsing further into a black hole. This explosive event disperses heavy elements into space, enriching the interstellar medium for future star formation.
A high mass protostar will eventually evolve into a massive star like a red supergiant, followed by a supernova explosion. After the supernova event, the remnants may form a neutron star or a black hole.
The Sun is a medium mass star in main sequence.
High, typically 10 to 70 times (or more) the mass of our own sun.
White dwarf stage. Its shrinks to a lot extent in this stage. Edit: A high mass star is usually one that becomes a supergiant then a supernova. Eventually this should leave either a neutron star or a black hole, depending on the mass of the star. The previous answer is for low mass stars.
A star's birth mass determines its temperature, luminosity, size, and lifespan. These properties dictate the evolutionary path the star will take, influencing its appearance, behavior, and eventual fate. Therefore, a star's birth mass is considered its most fundamental property as it plays a crucial role in shaping its entire life cycle.
High mass.
Ultimately the mass a star has at the end of its life depends on its initial mass. This mass determines what stages a star will go through in its death throws.
A high mass star will leave behind either a neutron star of a black hole.
High mass.
no the sun is a medium mass star.
It can't. A blue star is a high-mass star. A yellow star has a medium mass.
no the sun is a medium mass star.
A low mass star will become a white dwarf star, eventually this will cool to become a black dwarf. A high mass star (at least 8 times the mass of our Sun) will form a neutron star or a black hole, after a supernova event.
white dwarf
The main factor that shapes the life and death of a star is its mass. The more massive the star, the faster it burns through its fuel and the faster it evolves. The mass of a star determines its temperature, luminosity, and eventual fate, such as whether it will end as a white dwarf, neutron star, or black hole.
A high mass protostar will eventually evolve into a massive star like a red supergiant, followed by a supernova explosion. After the supernova event, the remnants may form a neutron star or a black hole.
The Sun is a medium mass star in main sequence.