white dwarf
High mass.
A low mass star will become a white dwarf star, eventually this will cool to become a black dwarf. A high mass star (at least 8 times the mass of our Sun) will form a neutron star or a black hole, after a supernova event.
High mass.
A high-mass star will use up its fuel faster than a low-mass one. Depending on the amount of mass that remains at the end of its life, it may convert to a neutron star, or to a black hole.
The end life of a planetary nebula is typically associated with low mass stars. These stars eventually shed their outer layers to create a planetary nebula as they transition to the white dwarf stage of their evolution. High mass stars, on the other hand, end their lives in supernova explosions.
The major difference is that a low-mass star lives much longer. The reason for this is that a high-mass star gets hotter, is much brighter, and uses up its fuel much faster. The difference can be quite dramatic, with some stars being millions of times brighter than others. Also, assuming the star doesn't acquire additional mass, a low-mass star will end up as a white dwarf, while more massive stars will end up as a neutron star, or in the case of the most massive stars, a black hole.
The major difference is that a low-mass star lives much longer. The reason for this is that a high-mass star gets hotter, is much brighter, and uses up its fuel much faster. The difference can be quite dramatic, with some stars being millions of times brighter than others. Also, assuming the star doesn't acquire additional mass, a low-mass star will end up as a white dwarf, while more massive stars will end up as a neutron star, or in the case of the most massive stars, a black hole.
The major difference is that a low-mass star lives much longer. The reason for this is that a high-mass star gets hotter, is much brighter, and uses up its fuel much faster. The difference can be quite dramatic, with some stars being millions of times brighter than others. Also, assuming the star doesn't acquire additional mass, a low-mass star will end up as a white dwarf, while more massive stars will end up as a neutron star, or in the case of the most massive stars, a black hole.
The major difference is that a low-mass star lives much longer. The reason for this is that a high-mass star gets hotter, is much brighter, and uses up its fuel much faster. The difference can be quite dramatic, with some stars being millions of times brighter than others. Also, assuming the star doesn't acquire additional mass, a low-mass star will end up as a white dwarf, while more massive stars will end up as a neutron star, or in the case of the most massive stars, a black hole.
The major difference is that a low-mass star lives much longer. The reason for this is that a high-mass star gets hotter, is much brighter, and uses up its fuel much faster. The difference can be quite dramatic, with some stars being millions of times brighter than others. Also, assuming the star doesn't acquire additional mass, a low-mass star will end up as a white dwarf, while more massive stars will end up as a neutron star, or in the case of the most massive stars, a black hole.
The Sun is a medium mass star in main sequence.
A low to medium-mass star eventually evolves into a red giant as it runs out of fuel in its core. After shedding its outer layers, the star will collapse into a white dwarf, which is the end stage of its life cycle.