The field of view would be 80 times the diameter.
The field of view's diameter is inversely proportional to magnification; thus, the 5.6mm diameter at 40x magnification would become 140mm at 1x magnification. Mathematically, Field of view diameter = FOV1 / Magnification1 = FOV2 / Magnification2.
Field diameter is calculated by measuring the distance across the field of view of a microscope, then dividing that measurement by the magnification of the objective lens being used. This gives you the field diameter in micrometers.
To determine how many pith cells would fit across the diameter of a low-field microscope view, we first need to know the average size of a pith cell, which is typically around 0.1 to 0.5 mm in diameter. Low-field microscopes usually have a field of view diameter ranging from about 1 mm to 5 mm. Therefore, depending on the size of the pith cells and the specific field of view, approximately 2 to 50 pith cells could fit across the diameter of the microscope's view.
The size of the object would depend on its distance from the observer. The diameter of the field of view refers to the circular area you can see through a microscope or similar device and not the actual size of an object.
The field of view (FOV) of a microscope refers to the area visible through the lens. It is determined by the diameter of the microscope's field diaphragm and the objective lens magnification. A higher magnification will typically result in a smaller field of view, while lower magnifications will have a larger field of view.
The field of view's diameter is inversely proportional to magnification; thus, the 5.6mm diameter at 40x magnification would become 140mm at 1x magnification. Mathematically, Field of view diameter = FOV1 / Magnification1 = FOV2 / Magnification2.
Magnification is inversely proportional to the diameter of the field of view.
At low power on the compound microscope, the diameter of the field of view is 4 millimeters. This is reduced to 1.7 millimeters when you switch to medium power
Since the field of view is a circle, the size of the field of view is it's area. You would need to find the diameter of the field of view, using a transparent ruler or a micrometer. Divide the diameter measurement by 2 to get the radius. Then use the formula for the area of a circle, Area = πr2. For example, you measure the diameter of the field of view to be 2.14mm. Divide 2.14mm by 2 to get the radius, and you get 1.07mm. Square 1.07mm, which is 1.14mm2. Multiply x 3.14 (pi), and you get 3.58mm2. So the field of view for this example would be 3.58mm2.The field of view differs with different magnifications. The lower the magnification, the larger the field of view.
As the magnification of a microscope increases, the diameter of the field of view decreases. This is because higher magnification allows for more detailed observation of objects, but with a narrower field of view. Conversely, lower magnification provides a wider field of view but with less magnification.
Field diameter is calculated by measuring the distance across the field of view of a microscope, then dividing that measurement by the magnification of the objective lens being used. This gives you the field diameter in micrometers.
This process is called calculating the field of view diameter on a microscope. It involves measuring the diameter of the field of view using a ruler and knowing the magnification of the objective lens to determine the actual size of objects viewed under the microscope.
To determine how many pith cells would fit across the diameter of a low-field microscope view, we first need to know the average size of a pith cell, which is typically around 0.1 to 0.5 mm in diameter. Low-field microscopes usually have a field of view diameter ranging from about 1 mm to 5 mm. Therefore, depending on the size of the pith cells and the specific field of view, approximately 2 to 50 pith cells could fit across the diameter of the microscope's view.
To find the diameter of the field of view at high power, you can use the height of the field. If the field is 1.2 mm high and the object occupies one third of that field, then the height of the object is 0.4 mm (1.2 mm / 3). The diameter of the field of view is equal to the height when viewed in a circular field, so it remains 1.2 mm.
The size of the object would depend on its distance from the observer. The diameter of the field of view refers to the circular area you can see through a microscope or similar device and not the actual size of an object.
The field of view (FOV) of a microscope refers to the area visible through the lens. It is determined by the diameter of the microscope's field diaphragm and the objective lens magnification. A higher magnification will typically result in a smaller field of view, while lower magnifications will have a larger field of view.
The equation goes like this and works for both medium AND high feild diameter : Medium(High) DIA. = Low Diameter / [Med(High)mag/low mag] Brackets () are NOT for multiplication, they are for the other formula.