A silent mutation, where a change in the DNA sequence does not result in a change to the amino acid sequence of the protein, is likely to have the least effect on an organism. This is because the protein produced is unaffected, and therefore the organism's functioning remains unchanged.
Both types of mutation have the potential to cause a large effect.In general, a frameshift mutation is more likely to cause a large effect. This is because it shifts the 'reading frame' - so that all of the subsequent codons (groupings of 3 bases that are read to determine which amino acid will be added) will be changed.A point mutation is when a single base is replaced. This can either result in the same amino acid being added to the protein being synthesised (a silent mutation), a different amino acid being added (a missense mutation) or in a STOP codon (a nonsense mutation).If a point mutation causes a premature STOP codon - this is quite likely to have a large effect on the protein.
A mutation that makes a rabbit able to run faster.
The most likely effect of an error during DNA translation is a mutation. Some mutations are beneficial, some are deadly and some are what is called "nonsense" mutations. Nonsense mutations have no benefits nor do they have any "bad" consequences.
A frame shift mutation destroys the correct sequence of amino acids from the point of the mutation. The protein produced by a frame shift mutation would more than likely be nonfunctional.
A silent mutation, where a change in the DNA sequence does not result in a change to the amino acid sequence of the protein, is likely to have the least effect on an organism. This is because the protein produced is unaffected, and therefore the organism's functioning remains unchanged.
The offspring will have abnormal eyes--APEX
Both types of mutation have the potential to cause a large effect.In general, a frameshift mutation is more likely to cause a large effect. This is because it shifts the 'reading frame' - so that all of the subsequent codons (groupings of 3 bases that are read to determine which amino acid will be added) will be changed.A point mutation is when a single base is replaced. This can either result in the same amino acid being added to the protein being synthesised (a silent mutation), a different amino acid being added (a missense mutation) or in a STOP codon (a nonsense mutation).If a point mutation causes a premature STOP codon - this is quite likely to have a large effect on the protein.
A mutation in egg cells
A mutation that makes a rabbit able to run faster.
The otter's offspring will not survive.
The most likely effect of an error during DNA translation is a mutation. Some mutations are beneficial, some are deadly and some are what is called "nonsense" mutations. Nonsense mutations have no benefits nor do they have any "bad" consequences.
A frameshift mutation, such as an insertion of one nucleotide, is most likely to produce a protein with one extra amino acid. This type of mutation shifts the reading frame of the genetic code, leading to a change in the entire sequence of amino acids after the mutation site.
mutation
A frame shift mutation destroys the correct sequence of amino acids from the point of the mutation. The protein produced by a frame shift mutation would more than likely be nonfunctional.
A single base substitution mutation is least likely to be deleterious when it occurs in a non-coding region of DNA, such as in an intron or in a region with no functional significance. Additionally, if the mutation results in a silent or synonymous change in the amino acid sequence, it may not have a noticeable effect on the protein's function.
A point shift mutation is more likely to produce a neutral reaction. This is because it involves a change in one nucleotide. A frame shift mutation is more deleterious because it involves the insertion or deletion of multiple base pairs within a gene's coding sequence.