To find the mass of 9.70 × 10²⁴ molecules of methanol (CH₃OH), first calculate the number of moles using Avogadro's number (6.022 × 10²³ molecules/mol). This gives approximately 16.13 moles of methanol. The molar mass of methanol is about 32.04 g/mol, so the total mass is 16.13 moles × 32.04 g/mol ≈ 516.6 grams.
9.18x10^24 molecules CH3OH x 1 mole/6.02x10^23 molecules x 32 g/mole = 488 g (to 3 sig figs)
To find the mass of 9.52 × 10²⁴ molecules of methanol (CH₃OH), first calculate the number of moles using Avogadro's number (6.022 × 10²³ molecules/mol). This gives approximately 15.8 moles of methanol. The molar mass of methanol is about 32.04 g/mol, so the mass is calculated by multiplying the number of moles by the molar mass, resulting in approximately 506 grams.
To find the mass of 9.36 x 10²⁴ molecules of methanol (CH₃OH), we first need to determine the number of moles. Using Avogadro's number (6.022 x 10²³ molecules/mol), we calculate: [ \text{Moles of CH₃OH} = \frac{9.36 \times 10^{24} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules/mol}} \approx 15.55 \text{ moles} ] The molar mass of methanol is approximately 32.04 g/mol. Therefore, the mass is: [ \text{Mass} = 15.55 \text{ moles} \times 32.04 \text{ g/mol} \approx 498.6 \text{ grams} ] Thus, the mass of 9.36 x 10²⁴ molecules of methanol is approximately 498.6 grams.
To find the mass of 9.15 × 10²⁴ molecules of methanol (CH₃OH), we first need to determine the molar mass of methanol, which is approximately 32.04 g/mol. Using Avogadro's number (6.022 × 10²³ molecules/mol), we can convert the number of molecules to moles: ( n = \frac{9.15 \times 10^{24}}{6.022 \times 10^{23}} \approx 15.19 ) moles. Finally, we calculate the mass: ( \text{mass} = n \times \text{molar mass} = 15.19 , \text{mol} \times 32.04 , \text{g/mol} \approx 486.4 , \text{g} ).
To find the mass of 9.71 x 10²⁴ molecules of methanol (CH₃OH), we first need to determine the molar mass of methanol, which is approximately 32.04 g/mol. Next, we use Avogadro's number (6.022 x 10²³ molecules/mol) to convert molecules to moles: 9.71 x 10²⁴ molecules is about 16.14 moles. Finally, multiplying the number of moles by the molar mass gives: 16.14 moles x 32.04 g/mol ≈ 517.6 grams.
To calculate the mass of 9.32x10^24 molecules of methanol (CH3OH), you can first find the molar mass of CH3OH, which is approximately 32 g/mol. Then, you can convert the number of molecules to moles and finally to grams. The calculation would be (9.32x10^24 molecules) / (6.022x10^23 molecules/mol) * (32 g/mol) = 497 grams.
9.18x10^24 molecules CH3OH x 1 mole/6.02x10^23 molecules x 32 g/mole = 488 g (to 3 sig figs)
To find the mass of 9.03 x 10^24 molecules of methanol (CH3OH), we first calculate the molar mass of CH3OH: (1 x 12.01 g/mol) + (4 x 1.01 g/mol) + (1 x 16.00 g/mol) = 32.04 g/mol Then we can convert the number of molecules to moles and finally to grams: 9.03 x 10^24 molecules * (1 mol / 6.022 x 10^23 molecules) * 32.04 g/mol ≈ 482 g
The simplest form of the molecular formula for methanol {note corrected spelling} is CH4O, and its gram molecular mass is 32.04. By definition therefore, a mass of Avogadro's Number of molecules contains 32.04 grams. Avogadro's Number is about 6.022 X 1023. Therefore, 9.47 X 1024 molecules of methanol contains [(9.47 X 1024)/(6.022 X 1023)]32.04 or 504 grams, to the justified number of significant digits.
To find the mass of 3.62 x 10^24 molecules of CH3OH, you need to first calculate the molar mass of CH3OH, which is 32.04 g/mol. Then, you can use Avogadro's number (6.022 x 10^23 molecules/mol) to convert the number of molecules to moles. Finally, multiply the number of moles by the molar mass to find the mass.
To find the mass of 9.15 × 10²⁴ molecules of methanol (CH₃OH), we first need to determine the molar mass of methanol, which is approximately 32.04 g/mol. Using Avogadro's number (6.022 × 10²³ molecules/mol), we can convert the number of molecules to moles: ( n = \frac{9.15 \times 10^{24}}{6.022 \times 10^{23}} \approx 15.19 ) moles. Finally, we calculate the mass: ( \text{mass} = n \times \text{molar mass} = 15.19 , \text{mol} \times 32.04 , \text{g/mol} \approx 486.4 , \text{g} ).
To calculate the grams of sulphur trioxide, first find the molar mass of SO3 (80.06 g/mol). Next, calculate the number of moles in 1.88 x 10^24 molecules. Then, multiply the number of moles by the molar mass to get the grams.
200 grams H2O (1 mole H2O/18.016 grams)(6.022 X 1023/1 mole H2O) = 6.69 X 1024 molecules of water ======================
1 x 1024 molecules
4,96 x 1024 molecules of glucose is equal to 8,236 moles.
1.024
Quite a few! 427.4 grams KNO3 (1 mole KNO3/101.11 grams)(6.022 X 1023/1 mole KNO3) = 2.546 X 1024 molecules of potassium nitrate -----------------------------------------------------------