answersLogoWhite

0

The simplest form of the molecular formula for methanol {note corrected spelling} is CH4O, and its gram molecular mass is 32.04. By definition therefore, a mass of Avogadro's Number of molecules contains 32.04 grams. Avogadro's Number is about 6.022 X 1023. Therefore, 9.47 X 1024 molecules of methanol contains [(9.47 X 1024)/(6.022 X 1023)]32.04 or 504 grams, to the justified number of significant digits.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Earth Science

How many molecules are in 720 grams of C6H12O6?

To determine the number of molecules in 720 grams of C6H12O6 (glucose), you first need to calculate the number of moles present. The molar mass of glucose is 180.16 g/mol. Dividing 720 grams by the molar mass gives you 4 moles of C6H12O6. One mole of any substance contains Avogadro's number of molecules, which is approximately 6.022 x 10^23. Therefore, 4 moles of C6H12O6 would contain about 2.409 x 10^24 molecules.


What is the number of molecules in 16.75 grams of H2O?

To calculate the number of molecules in 16.75 grams of H2O, we first need to convert grams to moles (using the molar mass of H2O), and then convert moles to molecules using Avogadro's number. The molar mass of H2O is 18.015 g/mol. After converting, there are approximately 3.52 x 10^23 molecules in 16.75 grams of H2O.


How many grams are in 8.2 x 1022 molecules of NCl3?

To convert molecules to grams, first find the molar mass of NCl3: Nitrogen (N) has a molar mass of 14.01 g/mol, and chlorine (Cl) has a molar mass of 35.45 g/mol. Therefore, the molar mass of NCl3 is 14.01 + (3 * 35.45) = 120.36 g/mol. Now, use this molar mass to convert molecules to grams: 8.2 x 10^22 molecules * (1 mol / 6.022 x 10^23 molecules) * 120.36 g/mol ≈ 16.06 grams.


What is the mass of 2.50 moles of oxygen gas?

The relationship between number of moles and mass is: n = m/MW Where n is the number of moles, m is the mass in grams and MW is the molecular weight (or molecular mass). Subsituting the numbers into the equation: 2.5 mol = m/32 (from O2(g), 16 from each oxygen) m = 2.5 * 32 = 80 grams This also means that there is approximately 1.5 x 1024 molecules of O2 in your sample.


How many molecules are in 654.5 grams calcium chloride?

To find the number of molecules in 654.5 grams of calcium chloride, you need to first convert the mass to moles using the molar mass of calcium chloride. Then, you can use Avogadro's number (6.022 x 10^23) to find the number of molecules.

Related Questions

How many grams are in a sample of sulphur trioxide that has 1.88 x 1024 molecules?

To calculate the grams of sulphur trioxide, first find the molar mass of SO3 (80.06 g/mol). Next, calculate the number of moles in 1.88 x 10^24 molecules. Then, multiply the number of moles by the molar mass to get the grams.


What is a yottagram?

A yottagram is a unit of mass equal to 1024 grams.


What is the mass (in grams) of 9.18 1024 molecules of methanol (CH3OH)?

9.18x10^24 molecules CH3OH x 1 mole/6.02x10^23 molecules x 32 g/mole = 488 g (to 3 sig figs)


What is the mass (in grams) of 9.52 1024 molecules of methanol (CH3OH)?

To find the mass of 9.52 × 10²⁴ molecules of methanol (CH₃OH), first calculate the number of moles using Avogadro's number (6.022 × 10²³ molecules/mol). This gives approximately 15.8 moles of methanol. The molar mass of methanol is about 32.04 g/mol, so the mass is calculated by multiplying the number of moles by the molar mass, resulting in approximately 506 grams.


What is the mass in grams of 9.70 1024 molecules of methanol CH3OH?

To find the mass of 9.70 × 10²⁴ molecules of methanol (CH₃OH), first calculate the number of moles using Avogadro's number (6.022 × 10²³ molecules/mol). This gives approximately 16.13 moles of methanol. The molar mass of methanol is about 32.04 g/mol, so the total mass is 16.13 moles × 32.04 g/mol ≈ 516.6 grams.


What is the mass in grams of 9.71 x 1024 molecules of methanol?

To find the mass of 9.71 x 10²⁴ molecules of methanol (CH₃OH), we first need to determine the molar mass of methanol, which is approximately 32.04 g/mol. Next, we use Avogadro's number (6.022 x 10²³ molecules/mol) to convert molecules to moles: 9.71 x 10²⁴ molecules is about 16.14 moles. Finally, multiplying the number of moles by the molar mass gives: 16.14 moles x 32.04 g/mol ≈ 517.6 grams.


What is the mass of 3.62 X 1024 molecules of CH3OH?

To find the mass of 3.62 x 10^24 molecules of CH3OH, you need to first calculate the molar mass of CH3OH, which is 32.04 g/mol. Then, you can use Avogadro's number (6.022 x 10^23 molecules/mol) to convert the number of molecules to moles. Finally, multiply the number of moles by the molar mass to find the mass.


What is the mass in grams of 9.32x1024 molecules of methanol CH3OH?

To calculate the mass of 9.32x10^24 molecules of methanol (CH3OH), you can first find the molar mass of CH3OH, which is approximately 32 g/mol. Then, you can convert the number of molecules to moles and finally to grams. The calculation would be (9.32x10^24 molecules) / (6.022x10^23 molecules/mol) * (32 g/mol) = 497 grams.


How many molecules are there in 200 grams of h2o?

200 grams H2O (1 mole H2O/18.016 grams)(6.022 X 1023/1 mole H2O) = 6.69 X 1024 molecules of water ======================


What is the mass in grams of 1.20x1025 molecules of ammonia NH3?

To find the mass in grams of 1.20x10^25 molecules of ammonia (NH3), you first calculate the molar mass of NH3 (17.031 g/mol). Then, divide the given number of molecules by Avogadro's number (6.022x10^23 molecules/mol) to find the number of moles, and finally, multiply the number of moles by the molar mass to get the mass in grams, which will be approximately 4.08x10^2 grams.


What is the mass in grams of 9.36 1024 molecules of methanol CH3OH?

To find the mass of 9.36 x 10²⁴ molecules of methanol (CH₃OH), we first need to determine the number of moles. Using Avogadro's number (6.022 x 10²³ molecules/mol), we calculate: [ \text{Moles of CH₃OH} = \frac{9.36 \times 10^{24} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules/mol}} \approx 15.55 \text{ moles} ] The molar mass of methanol is approximately 32.04 g/mol. Therefore, the mass is: [ \text{Mass} = 15.55 \text{ moles} \times 32.04 \text{ g/mol} \approx 498.6 \text{ grams} ] Thus, the mass of 9.36 x 10²⁴ molecules of methanol is approximately 498.6 grams.


What is the mass in grams of 7.50 and times1020 molecules of caffeine C8H10N4O2?

To calculate the mass in grams of 7.50 x 10^20 molecules of caffeine (C8H10N4O2), you need to determine the molar mass of caffeine and then convert the number of molecules to moles using Avogadro's number. Finally, multiply the moles of caffeine by the molar mass to find the mass in grams.