answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

What powers the proton gradient of positive ions in the stroma?

The proton gradient across the thylakoid membrane is powered by the flow of electrons from water to NADP+ during photosynthesis. This flow of electrons creates a proton gradient that drives ATP production through ATP synthase.


What process involves the chloroplast?

Photosynthesis (The chloroplasts in plant cells use solar energy to process nutrients.)


What is the function of the proton pumps in the thylakoid membranes?

Proton pumps in the thylakoid membranes of chloroplasts create a proton gradient by pumping H+ ions from the stroma into the thylakoid lumen during photosynthesis. This gradient is utilized by ATP synthase to produce ATP through chemiosmosis.


Where does a pair of electrons reaches the second electron carrier enough energy has been released to pump a proton from the stroma?

The pair of electrons reaches the cytochrome complex, where energy is released. This energy is used to pump a proton from the stroma into the thylakoid space against a concentration gradient, contributing to the proton gradient that drives ATP synthesis during photosynthesis.


Does atp synthase change ADP to atp when light energy pass through it?

No, ATP synthase does not directly use light energy to convert ADP to ATP. ATP synthase uses the energy stored in the form of a proton gradient across a membrane to catalyze the synthesis of ATP from ADP and inorganic phosphate. Light energy is typically used in photosynthesis to generate this proton gradient in the chloroplast membrane.

Related Questions

How are proton pumps utilized in the process of photosynthesis?

Proton pumps are used in photosynthesis to create a proton gradient across the thylakoid membrane. This gradient is essential for the production of ATP, which is a key energy source for the light-dependent reactions of photosynthesis.


What powers the proton gradient of positive ions in the stroma?

The proton gradient across the thylakoid membrane is powered by the flow of electrons from water to NADP+ during photosynthesis. This flow of electrons creates a proton gradient that drives ATP production through ATP synthase.


What process involves the chloroplast?

Photosynthesis (The chloroplasts in plant cells use solar energy to process nutrients.)


In photosynthesis what is the immediate source of energy used to produce a proton gradient?

The immediate source of energy used to produce a proton gradient in photosynthesis is light energy. Light energy is captured by chlorophyll within the thylakoid membranes of chloroplasts, where it drives the process that generates a proton gradient across the membrane.


Synthesis of ATP via a proton gradient is called?

Chemiosmosis (involves the pumping of protons through special channels in the membranes of mitochondria from the inner to the outer compartment. The pumping establishes a proton gradient).


The movement of hydrogen ions into the thylakoid space creates what?

The movement of hydrogen ions into the thylakoid space creates a proton gradient. This proton gradient is essential for driving ATP synthesis during the light-dependent reactions of photosynthesis.


In photosynthesis an H plus ion gradient froms across what?

In photosynthesis, an H+ ion gradient forms across the thylakoid membrane of the chloroplast. This gradient is established through the process of electron transport chain and proton pumping during the light reactions, which leads to the generation of ATP via chemiosmosis.


ATP is formed when the thylakoid compartment?

ATP is formed when the thylakoid compartment of the chloroplast generates a proton gradient through the process of photosynthesis. This proton gradient is used by the ATP synthase enzyme to catalyze the formation of ATP from ADP and inorganic phosphate.


How is proton gradient established?

A proton gradient is established with an electron transport chain, where energy from electrons is donated from an high-energy source (such as food) to provide intracellular enzymes the energy to pump protons across an impermeable membrane in order to form a region with a high concentration of protons. Hope this helps! :)


What is the function of the proton pumps in the thylakoid membranes?

Proton pumps in the thylakoid membranes of chloroplasts create a proton gradient by pumping H+ ions from the stroma into the thylakoid lumen during photosynthesis. This gradient is utilized by ATP synthase to produce ATP through chemiosmosis.


Where does a pair of electrons reaches the second electron carrier enough energy has been released to pump a proton from the stroma?

The pair of electrons reaches the cytochrome complex, where energy is released. This energy is used to pump a proton from the stroma into the thylakoid space against a concentration gradient, contributing to the proton gradient that drives ATP synthesis during photosynthesis.


What event contributes directly to the creation of a proton gradient across the thylakoid membrane?

The flow of electrons through the photosynthetic electron transport chain contributes directly to the creation of a proton gradient across the thylakoid membrane. As electrons move through the chain, they pump protons from the stroma into the thylakoid lumen, generating the proton gradient used for ATP production during photosynthesis.