haha
When two continental plates collide, they can form mountain ranges due to the intense compression and uplift of the Earth's crust. This collision can also lead to the formation of earthquakes as the plates grind against each other. Over time, the collision can result in the merging of the two continental plates into a single larger landmass.
When plates collide, they can either crumple and fold, creating mountain ranges, or one plate can slide beneath the other, forming trenches and volcanic arcs. The type of collision depends on the type of plates involved - oceanic, continental, or a combination.
When tectonic plates collide, they can form various geological features depending on the nature of the collision. If two continental plates converge, they can create mountain ranges, such as the Himalayas. When an oceanic plate collides with a continental plate, it can lead to subduction, forming deep ocean trenches and volcanic arcs. Additionally, the collision of two oceanic plates can result in island arcs.
When oceanic plates collide and slide under continental plates, they can form volcanic mountain ranges called continental volcanic arcs. These arcs result from the melting of the descending oceanic plate, which then feeds magma to the Earth's surface. Examples include the Andes in South America and the Cascades in North America.
False. A rift valley forms when continental plates diverge or pull apart. When two continental plates collide the result is a mountain range.
When two plates carrying continental crust collide, both plates crumple and fold due to the immense pressure. This can lead to the formation of mountain ranges and earthquakes along the convergent boundary. The collision can also result in the subduction of one continental plate beneath the other, ultimately leading to the formation of a mountain belt.
Mountain buildup.
When two continental plates collide, they can form mountain ranges due to the intense compression and uplift of the Earth's crust. This collision can also lead to the formation of earthquakes as the plates grind against each other. Over time, the collision can result in the merging of the two continental plates into a single larger landmass.
When two continental plates collide, the crust is thickened, buckled and deformed--gaining elevation. Mountain chains are the result; their creation occurring over periods of millions of years.
When plates collide, they can either crumple and fold, creating mountain ranges, or one plate can slide beneath the other, forming trenches and volcanic arcs. The type of collision depends on the type of plates involved - oceanic, continental, or a combination.
If two continental plates collide, they will likely result in the formation of a mountain range due to the immense pressure and force generated during the collision. The leading edge of each plate is forced upwards, creating fold mountains with complex geological structures.
Trolled
When oceanic plates collide and slide under continental plates, they can form volcanic mountain ranges called continental volcanic arcs. These arcs result from the melting of the descending oceanic plate, which then feeds magma to the Earth's surface. Examples include the Andes in South America and the Cascades in North America.
False. A rift valley forms when continental plates diverge or pull apart. When two continental plates collide the result is a mountain range.
When oceanic and continental plates collide, the oceanic plate is usually forced under the continental plate in a process called subduction. This can result in the formation of mountain ranges on the continental plate and can lead to the creation of volcanic arcs. The collision can also cause earthquakes and tsunamis.
When pieces of continental crust collide at a convergent boundary, it is called continental collision. This collision can result in the formation of mountain ranges, such as the Himalayas from the collision of the Indian Plate with the Eurasian Plate.
When a oceanic plate collides with a continental plate, the denser oceanic plate is usually subducted beneath the lighter continental plate. This can result in the formation of mountain ranges, volcanic arcs, and deep ocean trenches. The collision can also lead to earthquakes and the release of magma.