Hypericin salts are red in organic solvents and show a typical absorbance at 590 nm, which is useful to quantify hypericin in the drug extracts
If you have a spectrofotometer ( the thing to mesure the absorbance) then play with the setting and use a maximum. this will lay close to your specific absorbance or take the pharmacopea or a MERCK index
Absorbance and optical density (OD) are often used interchangeably to describe the light absorbance properties of a substance. However, technically, absorbance refers to the logarithm of the ratio of the intensity of light incident on a material to the intensity transmitted through the material, while OD specifically refers to the absorbance measured in a spectrophotometer at a specific wavelength.
The maximum wavelength of absorbance for sodium dichromate typically occurs around 350-370 nanometers (nm). This absorbance is primarily due to the presence of the chromate ion, which exhibits strong UV-visible absorbance characteristics. The specific wavelength can vary slightly depending on the concentration and the solvent used.
To determine the absorbance at 320 nm, you need to measure the light intensity before and after it passes through a sample at that wavelength. Absorbance (A) is calculated using the formula A = log10(I0/I), where I0 is the incident light intensity and I is the transmitted light intensity. The specific absorbance value will depend on the properties of the sample being tested. If you have a specific sample or context in mind, please provide more details for a more tailored response.
Absorbance on a spectrophotometer is a measure of the amount of light absorbed by a sample at a specific wavelength. It provides information on the concentration of a substance in the sample since absorbance is directly proportional to concentration according to the Beer-Lambert law. A higher absorbance indicates greater absorption of light, which can be used to quantify the concentration of the absorbing species in the sample.
If you have a spectrofotometer ( the thing to mesure the absorbance) then play with the setting and use a maximum. this will lay close to your specific absorbance or take the pharmacopea or a MERCK index
It is believed that hypericin can be useful as an antidepressant and mood lifter.
specific absorbance- it is absorbance in a solution containing one gm of substance in 100 ml solvent in 1cm shell. so it is having a difference with absorbance which is negative logarithm of incident light to the transmitted light. divya.chakraborty@gmail.com
The relationship between the wavelength of light and absorbance in a substance is that different substances absorb light at specific wavelengths. This absorption is measured as absorbance, which increases as the substance absorbs more light at its specific wavelength.
A spectrometer measures absorbance by passing light through a sample and detecting how much light is absorbed at specific wavelengths. The amount of absorbed light is then used to calculate the absorbance of the sample.
St. John's Wort
In a graph, absorbance is typically shown on the y-axis and wavelength on the x-axis. The relationship between absorbance and wavelength is that as the wavelength of light increases, the absorbance generally decreases. This is because different substances absorb light at specific wavelengths, so the absorbance of a substance can vary depending on the wavelength of light being used.
Absorbance and optical density (OD) are often used interchangeably to describe the light absorbance properties of a substance. However, technically, absorbance refers to the logarithm of the ratio of the intensity of light incident on a material to the intensity transmitted through the material, while OD specifically refers to the absorbance measured in a spectrophotometer at a specific wavelength.
The maximum wavelength of absorbance for sodium dichromate typically occurs around 350-370 nanometers (nm). This absorbance is primarily due to the presence of the chromate ion, which exhibits strong UV-visible absorbance characteristics. The specific wavelength can vary slightly depending on the concentration and the solvent used.
To determine the absorbance at 320 nm, you need to measure the light intensity before and after it passes through a sample at that wavelength. Absorbance (A) is calculated using the formula A = log10(I0/I), where I0 is the incident light intensity and I is the transmitted light intensity. The specific absorbance value will depend on the properties of the sample being tested. If you have a specific sample or context in mind, please provide more details for a more tailored response.
A high absorbance in a spectrophotometry analysis indicates that a substance strongly absorbs light at a specific wavelength, which can be used to determine the concentration of the substance in the sample.
A high absorbance in spectrophotometry indicates that a substance strongly absorbs light at a specific wavelength, suggesting a high concentration of that substance in the sample being analyzed.