answersLogoWhite

0

Depends on the age of the neutron star. As a neutron star no longer has any method to produce heat, it will slowly cool over time.

A young neutron star will have a core temperature of about 106 kelvin.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

How does a star turns into a neutron star?

A star 8 time the mass of the Sun turns into a neutron star when it run out of fuel, become a supergiant, and undergo supernova explosion. After the explosion, a core remains. If the core is less than 3 Solar masses, it becomes a neutron star, or else it becomes a black hole.


What factor determines if a neutron star forms or a black hole forms after a supernova explosion?

The factor that determines whether a neutron star or a black hole forms after a supernova explosion is the mass of the collapsing core of the star. If the core's mass is between about 1.4 and 3 times the mass of the sun, a neutron star is formed. If the core's mass exceeds about 3 solar masses, a black hole is likely to form.


Do black holes and neutron stars have any connection?

Yes, both black holes and neutron stars are remnants of the death of massive stars. Neutron stars form when the core of a massive star collapses but does not produce a black hole. Black holes are formed when the core of a massive star collapses beyond the neutron star stage.


What is a star in which only neutrons can exitst in its core?

A neutron star is a celestial object that consists almost entirely of neutrons, packed closely together in its core. Neutron stars are incredibly dense and form when a massive star collapses in a supernova explosion. The gravitational force of a neutron star is so strong that it can overcome the electron degeneracy pressure and collapse protons and electrons into neutrons.


Produced when the outer core of a star explodes after the core collapse?

A black hole or a neutron star, depending on the mass of the remaining core. Also a lot of material is ejected into space.

Related Questions

When a collapsed core becomes so dense only neutrons can exist there a what is formed?

A Neutron Star


What cause a neutron star to form?

The strong gravity of the core of a dead high-mass star causes a neutron star to form. When the high-mass star becomes a supernova and leaves a core behind, the core no longer undergo fusion. Without fusion, gravity starts to push the core inward until most protons and electrons are crushed into neutrons, a neutron star forms. If the core is too massive, the neutron star would collapse and become a black hole.


How are neutron stars formed?

Neutron stars are formed when stars with more than 8 times the mass of the Sun run out of fuel and explodes as a supernova. After the star explodes, the core of the star remains, the core would then become a neutron star or a black hole. If the core remain is less than 3 times the mass of the sun, it would become a neutron star.


What is a star that explodes in supernova what does its core become?

When a star explodes in a supernova, its core can collapse into either a neutron star or a black hole, depending on the mass of the original star. For stars with masses less than about 3 times that of the Sun, the core collapses into a neutron star, which is an extremely dense and compact object. For more massive stars, the core collapses further into a singularity, forming a black hole.


How does a star turns into a neutron star?

A star 8 time the mass of the Sun turns into a neutron star when it run out of fuel, become a supergiant, and undergo supernova explosion. After the explosion, a core remains. If the core is less than 3 Solar masses, it becomes a neutron star, or else it becomes a black hole.


What factor determines if a neutron star forms or a black hole forms after a supernova explosion?

The factor that determines whether a neutron star or a black hole forms after a supernova explosion is the mass of the collapsing core of the star. If the core's mass is between about 1.4 and 3 times the mass of the sun, a neutron star is formed. If the core's mass exceeds about 3 solar masses, a black hole is likely to form.


Where do neutron stars form?

Neutron stars could form in places where there are high-mass stars. After the star runs out of fuel in its core, the core collapses while the shell explodes into the space as supernova. The core would then become a neutron star, it might also become a black hole if it is massive enough.


Do black holes and neutron stars have any connection?

Yes, both black holes and neutron stars are remnants of the death of massive stars. Neutron stars form when the core of a massive star collapses but does not produce a black hole. Black holes are formed when the core of a massive star collapses beyond the neutron star stage.


What is a star in which only neutrons can exitst in its core?

A neutron star is a celestial object that consists almost entirely of neutrons, packed closely together in its core. Neutron stars are incredibly dense and form when a massive star collapses in a supernova explosion. The gravitational force of a neutron star is so strong that it can overcome the electron degeneracy pressure and collapse protons and electrons into neutrons.


Produced when the outer core of a star explodes after the core collapse?

A black hole or a neutron star, depending on the mass of the remaining core. Also a lot of material is ejected into space.


Which type of star is produced when a large star collapses in a supernova?

When a large star collapses in a supernova, it can produce either a neutron star or a black hole, depending on the mass of the original star. A neutron star forms when the core of the star collapses but the outer layers are ejected, while a black hole forms when the core collapses completely.


What may the collapsed core of a supergiant star form?

What the core of the star will become is dependent of the mass of the supergiant star. Stars between about 3 and 10 solar masses will generally become neutron stars. Stars above 10 solar masses generally become black holes.