The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be estimated using their standard electrode potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The voltage of the galvanic cell can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a cell voltage of approximately 3.87 V. This indicates that the cell can produce a significant amount of electrical energy.
4.2V
4.2 V
The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be calculated using their standard reduction potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a voltage of approximately +3.87 V. This indicates that the galvanic cell can produce a significant amount of electrical energy.
The voltage of a galvanic cell made with magnesium (Mg) as the anode and gold (Au) as the cathode can be estimated using standard reduction potentials. Magnesium has a standard reduction potential of -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the anode potential from the cathode potential, resulting in a voltage of approximately +3.87 V for the cell. This positive voltage indicates that the cell can generate electrical energy.
Mg(s) | Mg2+(aq)Au+(aq) | Au(s)
4.2V
4.2 V
The voltage of a galvanic cell made with magnesium (Mg) and gold (Au) can be calculated using their standard reduction potentials. Magnesium has a standard reduction potential of about -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the reduction potential of magnesium from that of gold, resulting in a voltage of approximately +3.87 V. This indicates that the galvanic cell can produce a significant amount of electrical energy.
The voltage of a galvanic cell made with magnesium (Mg) as the anode and gold (Au) as the cathode can be estimated using standard reduction potentials. Magnesium has a standard reduction potential of -2.37 V, while gold has a standard reduction potential of +1.50 V. The overall cell potential can be calculated by subtracting the anode potential from the cathode potential, resulting in a voltage of approximately +3.87 V for the cell. This positive voltage indicates that the cell can generate electrical energy.
Mg(s) | Mg2+(aq)Au+(aq) | Au(s)
Mg(s) | Mg2+(aq)Au+(aq) | Au(s)
Mg(s) | Mg2+(aq) Au+(aq) | Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Mg(s) | Mg2+(aq) Au+(aq) | Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)