In chemistry, the outcome of a reaction must have the same mass as the initial state. This means that if you have 32g of oxygen and 4g of hydrogen, you just have to add the numbers to discover the original mass (in this case, 36g).
Also 10 grams.
The percentage of oxygen is 54,84 %.
When hydrogen and oxygen chemically combine to form water (H₂O), the mass ratio of hydrogen to oxygen is approximately 1:8. This is based on the molar masses, where hydrogen has a molar mass of about 1 gram per mole and oxygen about 16 grams per mole. Therefore, for every 2 grams of hydrogen, there are about 16 grams of oxygen in water, maintaining that 1:8 ratio.
The atomic mass of hydrogen is 1.008 and the molecular mass of water, with formula H2O, is 18.015. Therefore, the mass of hydrogen to that of water has the ratio of 2(1.008)/18.015 = about 0.1119, and the answer to the problem is 300/0.1119 = 2.68 X 103 grams, to the justified number of significant digits.
For the reaction 2H₂ + O₂ → 2H₂O, we know that the molar ratio of H₂ to O₂ is 2:1. To produce 900 grams of water, we need 450 grams of hydrogen (900g / 2). Therefore, we need to add 450 grams of hydrogen to 800 grams of oxygen to produce 900 grams of water.
Also 10 grams.
The total mass of the products would be 10 grams, as mass is conserved in a chemical reaction. When water decomposes into its elements, hydrogen and oxygen, the total mass of the products will be the same as the mass of the reactant.
The molar mass of potassium chlorate (KClO3) is 122.55 g/mol. This means that 122.55 grams of potassium chlorate yield 3 moles of oxygen gas. To calculate the amount of potassium chlorate that decomposes to yield 30 grams of oxygen, you can set up a simple ratio using the molar masses.
The percentage of oxygen is 54,84 %.
The proportion by mass of hydrogen to oxygen in hydrogen peroxide is 1:16. This means that for every 1 gram of hydrogen in hydrogen peroxide, there are 16 grams of oxygen.
It is not measured in grams but PPM because it is a gas.
The balanced chemical equation for the reaction of hydrogen and oxygen to form water is 2H2 + O2 -> 2H2O. Based on the equation, for every 2 grams of hydrogen, 64 grams of oxygen are needed to form 36 grams of water. Thus, if 8 grams of hydrogen react completely with 64 grams of oxygen, the total mass of water formed would be 36 grams.
25
43.2 grams of water
45 g water are obtained.
The atomic mass of hydrogen is 1.008 and the molecular mass of water, with formula H2O, is 18.015. Therefore, the mass of hydrogen to that of water has the ratio of 2(1.008)/18.015 = about 0.1119, and the answer to the problem is 300/0.1119 = 2.68 X 103 grams, to the justified number of significant digits.
For the reaction 2H₂ + O₂ → 2H₂O, we know that the molar ratio of H₂ to O₂ is 2:1. To produce 900 grams of water, we need 450 grams of hydrogen (900g / 2). Therefore, we need to add 450 grams of hydrogen to 800 grams of oxygen to produce 900 grams of water.