temperature,pH and substrate concentration
At low concentration of substrate , rate of enzyme action is directly proportional to conc. of substrate .
Increasing the concentration of substrate will not overcome the effect of a noncompetitive inhibitor. The inhibitor binds to the enzyme at a site other than the active site, causing a conformational change that reduces the enzyme's activity. Therefore, increasing the concentration of substrate will not result in a significant increase in enzyme activity.
The four factors that affect enzyme activity are temperature, pH, substrate concentration, and the presence of inhibitors or activators. Temperature and pH can alter the enzyme's shape, while substrate concentration determines the rate of reaction. Inhibitors and activators can either decrease or increase enzyme activity, respectively.
Kc is the equilibrium constant of a chemical reaction related to concentrations. Kp is the equilibrium constant of a chemical reaction related to pressures. Generally, in normal conditions the effect of temperature is not so important.
it does effect the distance because it is far
pH
Temperature, pH, substrate concentration
At low concentration of substrate , rate of enzyme action is directly proportional to conc. of substrate .
effect of ph and concentration of subtrate
Because otherwise you would not know what change caused the effect you noticed.
The student's experiment in the Prelab Activity is designed to test the effect of changing the concentration of hydrogen peroxide on the rate of enzyme activity in the enzyme catalase. This involves manipulating the independent variable (concentration of hydrogen peroxide) to observe its impact on the dependent variable (rate of enzyme activity).
At a high ion concentration, the ion interfere with the bonds between the side groups of the amino acids making up the enzyme (which is a protein). This causes the enzyme to lose its shape, called denaturation. If the enzyme loses its shape, it can no longer accept and react substrate, so the rate of enzyme activity decreases.
The enzyme activity curve shows that as enzyme concentration increases, the reaction rate also increases. However, there is a point where adding more enzyme does not further increase the reaction rate, indicating that there is a limit to the effect of enzyme concentration on reaction rate.
Increasing the concentration of substrate will not overcome the effect of a noncompetitive inhibitor. The inhibitor binds to the enzyme at a site other than the active site, causing a conformational change that reduces the enzyme's activity. Therefore, increasing the concentration of substrate will not result in a significant increase in enzyme activity.
The four factors that affect enzyme activity are temperature, pH, substrate concentration, and the presence of inhibitors or activators. Temperature and pH can alter the enzyme's shape, while substrate concentration determines the rate of reaction. Inhibitors and activators can either decrease or increase enzyme activity, respectively.
B. Reactions continue with no effect on the concentration of reactant and products. Chemical equilibrium occurs when the rate of the forward reaction is equal to the rate of the reverse reaction, leading to a constant concentration of reactants and products.
When testing the effect of size on dissolving, it is important to control factors such as temperature, agitation (stirring), surface area of the solute, type of solvent used, and time allowed for dissolving. By keeping these variables constant, you can isolate the impact of size on the dissolution process.