One of the radioactive substances with the longest half-life is thorium-232, with a half-life of about 14 billion years. Another example is uranium-238, which has a half-life of about 4.5 billion years.
halflife
Radioactive waste is nearly always a mixture but it is possible to be a pure substance.
Half-life is the time it takes for one half of a certain type of atom (isotope) to decay. The amount of time varies a lot between different isotopes; in some cases it may be a fraction of a second, in another, it may be billions of years.
Hydrogen has three isotopes: protium (1H), deuterium (2H), and tritium (3H). Protium is the most abundant and consists of one proton and one electron. Deuterium contains one proton, one neutron, and one electron. Tritium has one proton, two neutrons, and one electron.
Yes
many. one example is lead-214 with a halflife of 26.8 minutes.
halflife
To determine the half-life of the substance, you can use the fact that after one half-life, the substance will be reduced to half of its original amount. In this case, after 40 days, the substance is reduced to one sixteenth of its original amount, which represents 4 half-lives (since 1/2^4 = 1/16). Thus, each half-life of this substance is 10 days.
my grandma
no, halflife is a constant for each isotope's decay process.
Radioactive substances are unstable as a result of the extra neutrons present in the nuclei of the substance. Non-radioactive substances are stable.
The basic idea is to compare the abundance of a naturally occurring radioactive isotope within a material to the abundance of its decay products; it is known how fast the radioactive isotope decays.
okay
A. The half-life of a radioactive substance is determined by the specific decay process of that substance, so it is not affected by the mass of the substance or the temperature. B. The mass of the substance does not affect the half-life of a radioactive substance. C. The addition of a catalyst does not affect the half-life of a radioactive substance. D. The type of radioactive substance directly determines its half-life, as different substances undergo radioactive decay at varying rates.
Radioactive waste is nearly always a mixture but it is possible to be a pure substance.
A radioactive substance emit nuclear radiations.
Half-life is the time it takes for one half of a certain type of atom (isotope) to decay. The amount of time varies a lot between different isotopes; in some cases it may be a fraction of a second, in another, it may be billions of years.