If you mean how bright the planet appears to us on Earth, then the distance from Earth is obviously very important.
One dimmer star can be closer than a brighter star that is far away. Light flux decreases as the square of the distance. A star that is three times as far away will have to shine nine times brighter than the closer star (absolute magnitude) to appear to have the same magnitude (apparent magnitude). Because apparent magnitude is the brightness of a star, as seen from Earth, whereas absolute magnitude is the brightness of a star as seen from the same distance - about 32.6 light years away.
Its real (absolute) magnitude; its distance from Earth; the amount of light that's absorbed by matter between the star and us (extinction); distortions due to gravitational lensing.
Food, Space and water
The apparent brightness of a star is determined by its luminosity (true brightness), distance from Earth, and any intervening dust or gas that may absorb or scatter its light. These factors affect how bright a star appears in the night sky to an observer on Earth.
Two different stars with different luminosity may appear to have the same brightness to an observer because the brighter may be more distant. This illustrates the need in astronomy to help range distant stars; since apparent magnitude alone will not yield enough information to gauge distance. The establishment of a "standard candle" or object of known brightness can be used for comparison; these can be established through various means including statistical models, observation of variable stars, behavior of nearby supernovae, etc. Once the distance of a star is known, the absolute magnitude can be derived from the apparent magnitude using the inverse-square law.
The three things that affect magnitude are the distance between the observer and the event, the intensity of the event itself, and the type of measurement scale used to quantify the magnitude (e.g., Richter scale for earthquakes).
Yes, at least three - The three brightest stars in Leo the Lion are : Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98
Here is some information on three of Leo's stars - The three brightest stars in Leo the Lion are : Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98
The apparent magnitude of a star is dependent on the star's size, temperature and distance from where it is observed. An absolute magnitude is determined by the same three factors, but the distance is fixed at 10 parsecs.
The three most significant stars in Leo the Lion are : Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98
The three brightest stars in Leo the Lion are : Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98 Hope that helps!
Here are some details of the three brightest stars in Leo the Lion. The three brightest stars are: Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98
The three brightest stars in Leo the Lion are : Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98 Hope that helps!
There are three factors, actually. The star's size and temperature determine the absolute magnitude, or how bright the star really is. Those two factors can be considered as one - the star's absolute magnitude. The absolute magnitude combined with our distance from the star determines its apparent magnitude, or how bright the star appears to be from Earth. So, a big, hot, super bright star very far away may have the same apparent magnitude as a small, cool star that's fairly close to the Earth.
One dimmer star can be closer than a brighter star that is far away. Light flux decreases as the square of the distance. A star that is three times as far away will have to shine nine times brighter than the closer star (absolute magnitude) to appear to have the same magnitude (apparent magnitude). Because apparent magnitude is the brightness of a star, as seen from Earth, whereas absolute magnitude is the brightness of a star as seen from the same distance - about 32.6 light years away.
small, cold, and very far away from Earth
The three brightest stars in Leo the Lion are : Alpha Leonis or Regulus (the Lion's heart) with an apparent magnitude of 1.35, Beta Leonis or Denebola (the Lion's tail) with an apparent magnitude of 2.14 and Gamma Leonis or Algieba (where the Lion's mane meets his body) with an apparent magnitude of 1.98