answersLogoWhite

0

This is a gas having a high concentration.

User Avatar

Wiki User

7y ago

What else can I help you with?

Continue Learning about Natural Sciences

Which of the following properties minimizes the differences between an ideal gas and a real gas?

- Weak intermolecular forces -Low density


Why is the ideal gas law useful even though gases do not exist?

The ideal gas law is useful as an approximation for real gases in many situations where the gas behaves similarly to an ideal gas. It helps chemists and physicists predict the behavior of gases under different conditions without having to account for all the complexities of real gas behavior. While gases may not perfectly follow the ideal gas law, it provides a good starting point for understanding gas behavior.


How can a real gas be made to approach being an ideal gas?

Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.


What are real and ideal gases and are all real gases ideal?

Ideal gases can be explained by the Kinetic Molecular Theory: 1) no attraction between gas particles 2) volume of individual gas particles are essentially zero 3) occupy all space available 4) random motion 5) the average kinetic energy is directly proportional to Kelvin Real gases has volume and attraction exists between gas particles. No gas behaves entirely ideal. Real gases act most ideal when temperature is is high and at low pressure.


What is the difference between the Ideal Gas Law and Kinetic Molecular Theory?

The Ideal Gas Law describes the behavior of ideal gases in terms of pressure, volume, temperature, and the number of gas particles. Kinetic Molecular Theory explains the behavior of gases in terms of the motion of gas particles and the interactions between them, helping to understand concepts such as temperature and pressure in relation to gas behavior.

Related Questions

Why do real gases deviate from ideal behavior?

Real gases deviate from ideal behavior due to factors such as intermolecular forces, molecular volume, and pressure. These factors cause real gases to occupy more space and have interactions that differ from the assumptions of the ideal gas law.


How do the particles in a real gas deviate from ideal gas behavior?

The particles in a real gas deviate from ideal gas behavior due to interactions between the particles. In an ideal gas, the particles are assumed to have no volume and no interactions with each other. In a real gas, the particles have volume and can interact through forces such as van der Waals forces. These interactions can cause the gas to deviate from ideal behavior, especially at high pressures and low temperatures.


What is the real gas formula used to calculate the behavior of gases under non-ideal conditions?

The real gas formula used to calculate the behavior of gases under non-ideal conditions is the Van der Waals equation.


What is an imaginary gas that conforms perfectly to the kinetic molecular theory callled?

That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.That's called an "ideal gas". The behavior of real gases is quite similar to an ideal gas, except when the pressure is too high, or the temperature too low.


Ideal gas law behavior of real gases under?

Real gases deviate from ideal gas behavior at high pressures and low temperatures due to interactions between gas molecules. These interactions cause deviations in volume and pressure from what would be expected based on the ideal gas law. At very high pressures or very low temperatures, these deviations become significant and the ideal gas law no longer accurately describes the system.


How does a real gas behave most nearly like an ideal gas?

A real gas behaves most like an ideal gas when it is at low pressure and high temperature.


At what conditions does a real gas behave most like an ideal gas?

A real gas behaves most like an ideal gas at high temperatures and low pressures.


Which of the following properties minimizes the differences between an ideal gas and a real gas?

- Weak intermolecular forces -Low density


Do real gases behave like ideal gases except at very high temperatures?

Gases behave most ideally at low pressure and high temperatures. At low pressures, the average distance of separation among atoms or molecules is greatest, minimizing interactive forces. At high temperatures, the atoms and molecules are in rapid motion and are able to overcome interactive forces more easily.


What is the difference between real and ideal culture?

Ideal culture will always differ from real culture; values and norms do not describe actual behavior, as much as, they describe how much we are supposed to behave. Real culture: what actually happens in everyday life; Ideal culture: how we are supposed to behave based on cultural norms and values.


Why is the ideal gas law useful even though gases do not exist?

The ideal gas law is useful as an approximation for real gases in many situations where the gas behaves similarly to an ideal gas. It helps chemists and physicists predict the behavior of gases under different conditions without having to account for all the complexities of real gas behavior. While gases may not perfectly follow the ideal gas law, it provides a good starting point for understanding gas behavior.


How can a real gas be made to approach being an ideal gas?

Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.