Highly reduced, or, nonexistent.
Disruptive selection can eliminate intermediate phenotypes by favoring extreme phenotypes, leading to a bimodal distribution. This selection occurs when individuals with extreme traits have a higher fitness than those with intermediate traits, resulting in the reduction of the intermediate phenotype in the population.
Stabilizing selection would result in a graph showing a peak at the intermediate phenotype, with fewer individuals at the extreme phenotypes. This is because individuals with intermediate phenotypes are favored, leading to the reduction of extreme phenotypes in the population over time.
Stabilizing selection is a type of natural selection that favors the intermediate phenotypes in a population, leading to a decrease in genetic diversity. Disruptive selection, on the other hand, favors extreme phenotypes over intermediate ones, resulting in increased genetic variation within a population.
Directional selection is shown on a graph as selection against an extreme. This occurs when individuals at one extreme of a trait distribution have lower fitness than individuals with intermediate phenotypes or those at the opposite extreme. Over time, this can lead to a shift in the average phenotype of a population.
disruptive selection
Disruptive selection can eliminate intermediate phenotypes by favoring extreme phenotypes, leading to a bimodal distribution. This selection occurs when individuals with extreme traits have a higher fitness than those with intermediate traits, resulting in the reduction of the intermediate phenotype in the population.
Disruptive selection occurs when the extreme phenotypes in a population are favored over intermediate phenotypes. This can lead to the divergence of a population into two distinct groups with different traits.
Yes, when stabilizing selection is acting, individuals with extreme phenotypes are selected against, leading to an increase in the frequencies of intermediate phenotypes within a population. This process helps to maintain the overall consistency of a particular trait or characteristic over successive generations by favoring individuals with traits closer to the population average.
Stabilizing selection would result in a graph showing a peak at the intermediate phenotype, with fewer individuals at the extreme phenotypes. This is because individuals with intermediate phenotypes are favored, leading to the reduction of extreme phenotypes in the population over time.
Stabilizing selection is the mode of selection that can lead to a reduction in variation without changing the mean of a trait. In this type of selection, extreme phenotypes are selected against, while intermediate phenotypes are favored, resulting in a narrower range of phenotypic variation but maintaining the same mean.
Stabilizing Selection-- The extremes are selected against.Example: height; mostly beings tend to the average height- not too many really short ones or really tall ones.Directional selection-- One extreme value is selected for.Example: speed; faster is always better so a population will tend to get faster over time.Disruptive selection-- The extremes are both selected for.This type of selection is not as common as the first two. Example: Prey-type animal with distinctive markings which the predators know will over time move away from the norm in both directions.
Stabilizing selection is a type of natural selection that favors the intermediate phenotypes in a population, leading to a decrease in genetic diversity. Disruptive selection, on the other hand, favors extreme phenotypes over intermediate ones, resulting in increased genetic variation within a population.
Stabilizing selection is the type of selection that keeps the center of the curve at its current position. This type of selection removes extreme phenotypes from the population, favoring the intermediate phenotype.
Directional selection is shown on a graph as selection against an extreme. This occurs when individuals at one extreme of a trait distribution have lower fitness than individuals with intermediate phenotypes or those at the opposite extreme. Over time, this can lead to a shift in the average phenotype of a population.
disruptive selection
Stabilizing selection, which acts against both extreme phenotypes and favors intermediate variants. Hence the narrowing of the bell curve in the middle.
The type of selection that removes the fringe from both ends of phenotype distribution and establishing a means or average. Genetic diversity decreases and there is a stabilization on a particular trait.