Which factor might determine whether the frequency of the new allele will increase in a population where a mutation occurs?
Generally, gene frequency will not change significantly unless the mutation is successful and advantageous enough that it is heavily selected in the population. Since most mutations result in failure of the organism to thrive (death, reproductive failure, etc.) they have little or no effect on a population's gene frequencies. Even if the mutation has no apparent detrimental effects it will, itself remain in the population at a low frequency unless it enhances the organism's ability to reproduce within the population.
If a mutation is present in a gamete, then the mutation will enter the population's gene pool. Once it is in the gene pool, natural selection and genetic drift will influence the frequency that the mutation appears in the population.
Mutation can create new alleles, therfore can change allele frequencies in a population.
The effect a mutation has on a population depends on two factors: First, every new mutation has to overcome the effects of chance on its survival. New mutations,when they exist in only one or two individuals, are often lost from the population due to genetic drift, or chance. For example, the mutation may never make it into a gamete (egg or sperm) and be lost. Or the gamete carrying the mutation may not be involved in a fertilization. Or the individual carrying the mutation may not find a mate, or may be killed when young. It is estimated that 1 out of three new mutations, regardless of the selective advantage, may be lost this way. Secondly, the selective value of the mutation (given it has survived being lost early due to drift) can determine its affect on the population. If it is deleterious, selection will act to reduce its frequency or even eventually remove it. If the mutation is neutral, its frequency will drift up and down due to chance, eventually either being lost or fixed (reaching a frequency of 100%). If it has a selective advantage over other alleles, it may eventually become fixed as well--how long depends on the size of the population and the strength of the advantage.
When a mutation first occurs, the frequency of the new allele is very low in the population. Over time, if the allele confers a selective advantage, it may increase in frequency through natural selection.
Which factor might determine whether the frequency of the new allele will increase in a population where a mutation occurs?
Generally, gene frequency will not change significantly unless the mutation is successful and advantageous enough that it is heavily selected in the population. Since most mutations result in failure of the organism to thrive (death, reproductive failure, etc.) they have little or no effect on a population's gene frequencies. Even if the mutation has no apparent detrimental effects it will, itself remain in the population at a low frequency unless it enhances the organism's ability to reproduce within the population.
1. The mutation rates affect the evolution of the population by two factors. Firstly, every new mutation overcomes the effects of survival. When new mutations exist in one or two individuals, they are often lost from the population due to genetic drift, or change. For example, the mutation may never make it to a gamete and may get lost. Secondly, the selective value of the mutation can determine its affect of the population. If it's harmful then the selection would act to reduce its frequency and eventually remove it.
Substitution mutation can increase genetic diversity within a population by introducing new genetic variations. This can lead to different traits and characteristics, potentially increasing the overall genetic variability of the population.
Simple put, let us say that color was a better camouflage coloration in any environment the lizard found itself. Then that better camouflage hid the lizard better from its predators. Then those lizards possessing this new mutation would survive longer, have greater reproductive success and drive a larger frequency of these mutant alleles that conferred this advantage into the populations gene pool.
mutation
Yes, brand new genes can only come from mutation.
If a mutation is present in a gamete, then the mutation will enter the population's gene pool. Once it is in the gene pool, natural selection and genetic drift will influence the frequency that the mutation appears in the population.
Mutation can create new alleles, therfore can change allele frequencies in a population.
The effect a mutation has on a population depends on two factors: First, every new mutation has to overcome the effects of chance on its survival. New mutations,when they exist in only one or two individuals, are often lost from the population due to genetic drift, or chance. For example, the mutation may never make it into a gamete (egg or sperm) and be lost. Or the gamete carrying the mutation may not be involved in a fertilization. Or the individual carrying the mutation may not find a mate, or may be killed when young. It is estimated that 1 out of three new mutations, regardless of the selective advantage, may be lost this way. Secondly, the selective value of the mutation (given it has survived being lost early due to drift) can determine its affect on the population. If it is deleterious, selection will act to reduce its frequency or even eventually remove it. If the mutation is neutral, its frequency will drift up and down due to chance, eventually either being lost or fixed (reaching a frequency of 100%). If it has a selective advantage over other alleles, it may eventually become fixed as well--how long depends on the size of the population and the strength of the advantage.
Mutations introduce new genetic variation into a population, which can disrupt the balance of allele frequencies required for the Hardy-Weinberg equilibrium. If a mutation increases the frequency of a particular allele, it can lead to deviations from the expected genotype frequencies under the Hardy-Weinberg equilibrium.