The energy comes from the heat to melt the iron
To calculate the energy needed to melt 25.4 grams of I2 (iodine), you can use the formula: energy = mass x heat of fusion. The heat of fusion for iodine is 15.52 kJ/mol. First, find the molar mass of I2 (253.8 g/mol) and then convert the mass to moles. Finally, multiply the moles by the heat of fusion to get the energy needed.
The necessary heat is 9,22 joules.
Cyanide does not melt iron, as cyanide is a chemical that is typically used in liquid or gas form to interfere with the body's ability to use oxygen. It is not a substance that has the ability to melt iron.
The heat fusion (H fusion) is the amount of energy required to change a substance from solid to liquid at its melting point. To calculate the energy needed to melt a mass of solid, you multiply the mass of the substance by its heat of fusion. The formula used is ( Q = m \cdot H_f ), where ( Q ) is the energy required, ( m ) is the mass, and ( H_f ) is the heat of fusion. This calculation provides the total energy needed to completely melt the solid into a liquid at its melting temperature.
The amount of energy needed to melt steel is approximately 1,650-1,800 kWh per metric ton, depending on the type of steel and the specific melting process used.
It takes approximately 2.4 million joules of energy to melt 1 metric ton of iron.
It takes approximately 64,000 Joules of energy to melt 1kg of gold. Therefore, to melt 2kg of gold, you would need around 128,000 Joules of energy.
800kj-----------Apex<('-'<)
To melt 1 gram of ice at 0°C, it requires 334 joules of energy. So for g grams of ice, the energy needed would be g multiplied by 334 joules.
Heat energy is needed to melt a solid because it increases the kinetic energy of the particles, causing them to break free from their fixed positions in the solid structure. The heat energy required to melt a solid is called "latent heat of fusion."
This energy is the enthalpy of fusion (or latent heat of fusion).
The energy required to melt a substance is its heat of fusion. For Palladium (Pd), the heat of fusion is 16.74 kJ/mol. To calculate the energy needed to melt 4.24 grams of Pd, first convert to moles by dividing by the molar mass of Pd (106.42 g/mol), then multiply by the heat of fusion. This yields approximately 3.34 kJ of energy needed to melt 4.24 grams of Pd.
which chemical is used to melt the iron
To calculate the energy needed to melt 25.4 grams of I2 (iodine), you can use the formula: energy = mass x heat of fusion. The heat of fusion for iodine is 15.52 kJ/mol. First, find the molar mass of I2 (253.8 g/mol) and then convert the mass to moles. Finally, multiply the moles by the heat of fusion to get the energy needed.
Iron ore is typically melted down using high-temperature heat sources such as blast furnaces, electric arc furnaces, or induction furnaces. These sources of energy provide the intense heat necessary to melt the iron ore and separate the metal from impurities.
Heat energy is needed to melt a solid because it provides the molecules in the solid with enough kinetic energy to overcome the forces holding them in a rigid structure. The specific heat energy required to melt a solid at its melting point is called the latent heat of fusion.
Energy is required in the melting process because high is needed to melt something