Stationary charge don't produce a magnetic field. because it has no velocity in it, without flow of electron we can't find electricity and for that we have no magnetic field for a stationary charge. It produce only electric field.
A) stationary electric charge B) moving electric charge C) stationary magnet D) a moving magnet
we know that force on a charge in magnetic field F=qvbsinx q-charge v-velocity b-strenth 0f magnetic field x-angle between the motion of chage and the magnetic field as the charge is stationary so v=0 so,F=0 so charge donot fill any force on it.
The magnetic field will have no effect on a stationary electric charge. ( this means that the magnetic field is also stationary. ) If the charge is moving , relative to the magnetic field then there might be an effect, but the size and direction of the effect will depend on the direction of the electric charge as it moves through the field. If the charge is moving parallel to the field there will be no effect on it. If the charge is moving at right angles to the field then it will experience a force that is mutually orthogonal to the field and direction of the motion. You really need diagrams to properly explain this
A magnet affects only moving charges due to their magnetic field alignment. Stationary charge particles do not produce a magnetic field of their own and do not interact with magnetic fields in the same way.
Stationary charge don't produce a magnetic field. because it has no velocity in it, without flow of electron we can't find electricity and for that we have no magnetic field for a stationary charge. It produce only electric field.
A) stationary electric charge B) moving electric charge C) stationary magnet D) a moving magnet
No, a stationary charge particle cannot be accelerated in a magnetic field. In order to be affected by a magnetic field, the charged particle must be moving.
By placing the stationary charge in a magnetic field that is changing over time, a magnetic force will be induced on the charge, causing it to move. This is known as electromagnetic induction. The moving magnetic field induces an electric field that then exerts a force on the charge, resulting in its movement.
we know that force on a charge in magnetic field F=qvbsinx q-charge v-velocity b-strenth 0f magnetic field x-angle between the motion of chage and the magnetic field as the charge is stationary so v=0 so,F=0 so charge donot fill any force on it.
The magnetic field will have no effect on a stationary electric charge. ( this means that the magnetic field is also stationary. ) If the charge is moving , relative to the magnetic field then there might be an effect, but the size and direction of the effect will depend on the direction of the electric charge as it moves through the field. If the charge is moving parallel to the field there will be no effect on it. If the charge is moving at right angles to the field then it will experience a force that is mutually orthogonal to the field and direction of the motion. You really need diagrams to properly explain this
Yes, a stationary electron does have a magnetic field.
A charge moving perpendicular to a magnetic field experiences a force that is perpendicular to both the charge's velocity and the magnetic field direction. This force causes the charge to move in a circular path around the field lines, with the radius of the circle determined by the charge's speed and the strength of the magnetic field. This phenomenon is known as magnetic deflection.
The force on a charge by a magnetic field is given by F = Bq v sin@ v - the speed of the charged particle with charge q. B - magnetic field induction in tesla. @ is the angle between the velocity vector and magnetic field vector. As dipole is stationary, the speed of charges is zero. So the force = 0 Hence the result.
A magnet affects only moving charges due to their magnetic field alignment. Stationary charge particles do not produce a magnetic field of their own and do not interact with magnetic fields in the same way.
It experiences a force.
That is called its magnetic field.