answersLogoWhite

0

What else can I help you with?

Related Questions

Why use sodium bicarbonate in iodometric titration?

Sodium bicarbonate is used in iodometric titration to react with excess iodine that may be present after the reaction with the analyte. This helps neutralize the solution and prevent any further reactions that could interfere with the titration endpoint. Additionally, sodium bicarbonate helps stabilize the pH of the solution during the titration process.


Why use NaHCO3 for iodometric titration?

Sodium bicarbonate (NaHCO3) is used in iodometric titration as a reaction enhancer to neutralize excess acids that may interfere with the redox reaction between iodine and the analyte being titrated. By maintaining a slightly basic pH, NaHCO3 helps stabilize the iodine solution, ensuring more accurate and reliable results.


Why is the pH adjusted to 10 before the complexometric titration?

Adjusting the pH to 10 before complexometric titration helps ensure the formation of a stable metal-ligand complex. At pH 10, metal ions form strong complexes with the chelating agent (usually EDTA) without interference from other ions. This pH also helps maintain the reaction conditions constant and improves the accuracy of the titration results.


What is the difference between condactometer titration and normal titation?

Conductometric titration measures changes in the electrical conductivity of a solution during a titration. Normal titration, on the other hand, typically involves measuring changes in pH or using an indicator to determine the endpoint. Conductometric titration can be more precise for reactions that do not involve a change in pH.


Why is the pH of the medium important in edta titration?

The pH of the medium is important in EDTA titration because the formation of the metal-EDTA complex depends on the pH. At certain pH levels, the metal-EDTA complex formation is optimized, leading to accurate results. Deviations from the optimal pH can affect the stability of the complex and lead to incorrect titration results.


What is the pH at the second equivalence point in a titration?

The pH at the second equivalence point in a titration is typically around 9 to 10.


What is the effect of adding the sulfuric acid before KI in iodometric titration?

Adding sulfuric acid before KI in an iodometric titration helps to acidify the solution and prevent the premature oxidation of iodide ions to iodine. This ensures that the iodide ions react with the analyte (substance being tested) instead of being oxidized by any oxidizing agents present in the solution. Acidifying the solution also helps to stabilize the iodine formed during titration.


How do you use pH meter for acid base titration?

To use a pH meter for acid-base titration, first calibrate the pH meter with standard buffer solutions of known pH. During the titration, continuously monitor and record the pH of the solution as the base is added to the acid until the equivalence point is reached. The equivalence point is indicated by a sudden change in pH, which helps determine the endpoint of the titration.


What are some ways to determine pH?

Titration


How many types of indictors are used in titration?

There are two main types of indicators used in titration: color indicators and pH indicators. Color indicators change color at specific pH ranges to indicate the endpoint of the titration, while pH indicators change color based on the pH of the solution.


What is the indicator use in potentiometric titration?

The indicator used in potentiometric titrations is typically a pH electrode. By measuring changes in pH during the titration process, the endpoint of the titration can be determined accurately. The pH electrode provides a continuous measurement of the solution's pH, allowing for a precise determination of the equivalence point.


How you select that which indicator should be used in any titration?

The selection of an indicator for a titration is based on the pH range over which the titration will occur. The indicator should have a color change that aligns with the pH at the equivalence point of the titration. Choosing an indicator with a pH range that encompasses the equivalence point will ensure accurate endpoint detection.