answersLogoWhite

0

A beta particle is deflected by a magnetic field. Perhaps you are thinking of the neutron or the gamma ray?

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Would a neutron be deflected by a maagnetic field why or why not?

Yes, a neutron can be deflected by a magnetic field because it is a charged particle. The movement of the neutron will be influenced by the Lorentz force, which occurs when a charged particle moves through a magnetic field.


Which way will negatively charged particle be deflected by a magnetic field?

A negatively charged particle will be deflected in a direction perpendicular to both its velocity and the magnetic field when moving through the field. This is due to the Lorentz force, which acts on the particle in a direction perpendicular to both its velocity and the magnetic field lines.


Which of the two charged particles of the same mass but different velocity will be deflected the most in magnetic field and why?

The charged particle with the higher velocity will be deflected the most in a magnetic field. This is because the magnetic force experienced by a charged particle is directly proportional to its velocity. Therefore, a higher velocity particle will experience a greater magnetic force and be deflected more.


Does earth have a magnatic field?

Yes


How did JJ Thomson know that the particles in the cathode-ray tube were negatively charged?

They are found to be deflected by electric and magnetic field in the specific direction in which a negatively charged particle would get deflected.


What type of particle would not be deflected by a magnetic field?

A neutron, an antineutron, a neutrino, an antineutrino, and a photon would not be deflected by a magnetic field, as they all have no net electric charge. I do not find a reference to an antiphoton, but it makes sense that, if it existed, it would also not be affected by a magnetic field.


How does the motion of a charged particle in a magnetic field affect its trajectory?

When a charged particle moves through a magnetic field, it experiences a force that causes it to change direction. This force is perpendicular to both the particle's velocity and the magnetic field, resulting in the particle moving in a curved path. This phenomenon is known as the Lorentz force and is responsible for the particle's trajectory being deflected in the presence of a magnetic field.


Particles deflected by an electric field are?

charged particles. When passing through an electric field, the charges in the particles experience a force that causes them to change direction or be deflected. This phenomenon is the basis for techniques such as mass spectrometry and particle accelerators.


How does the Earth's magnetic field deflect charged particles?

A charged particle naturally changes direction in a magnetic field. This is because any charged particle produces a magnetic field when it is moving. And if the charged particle is moving through a magnetic field, the two fields (in this case the Earth's and the one created by the moving particle) interact to deflect the particle. The particle will be deflected "to the side" or laterally, and positively charged particles will be deflected in the opposite direction of negatively charged one.


Which planet does not have a magnatic field?

Pluto. Too Cold


What effect does a magnetic field have on a charged particle?

A magnetic field alters the direction a charged particle is traveling. This is true if the charged particle is moving "across" and not "along" the magnetic lines of force of the field through which it is moving. The particle is said to be deflected when it (the particle) passes through magnetic field lines. The reason for the observed deflection is because a charged particle that is moving creates a magnetic field, and this field will react with the magnetic field through which it is moving. The result will be lateral deflection, and positively charged particles will be deflected one way and negatively charged particles will be deflected the other.


What can you conclude about the orientation of the beam relative to the magnetic field when a beam of electrons passes through a magnetic field without being deflected?

If a beam of electrons passes through a magnetic field without being deflected, then the orientation of the beam is perpendicular to the magnetic field lines. This is because the force acting on a charged particle in a magnetic field is always perpendicular to both the magnetic field and the velocity of the particle, causing the electrons to move in a circular path perpendicular to the field lines.