A neutron, an antineutron, a neutrino, an antineutrino, and a photon would not be deflected by a magnetic field, as they all have no net electric charge. I do not find a reference to an antiphoton, but it makes sense that, if it existed, it would also not be affected by a magnetic field.
Yes, a neutron can be deflected by a magnetic field because it is a charged particle. The movement of the neutron will be influenced by the Lorentz force, which occurs when a charged particle moves through a magnetic field.
Yes, an alpha particle would be affected by a magnetic field because it has a charge. When moving through a magnetic field, the charged alpha particle will experience a force perpendicular to both its velocity and the magnetic field direction, leading it to move in a curved path.
An alpha particle would move in a circular path due to its positive charge being acted upon by the magnetic field, as per the right-hand rule for moving charges in a magnetic field. This circular motion is known as cyclotron motion.
When the direction of the current in a wire is reversed in a magnetic field, the direction of the force acting on the wire also reverses. This causes the wire to move in the opposite direction within the magnetic field.
An alpha particle, which is a 24He nucleus, has a mass of 4 and a charge of +2. A beta particle has a charge of +1 or -1, depending on whether it is a positron (beta +) or an electron (beta -). It's mass is minuscule compared to the alpha particle, and it will undergo a comparatively huge deflection in the same field as an alpha particle would. Though the alpha particle has twice the charge as a beta particle, it has several thousand times the mass of that beta particle. As it is so much more massive than the beta particle, its inertia will be much more difficult to overcome even though it has twice the charge.
Yes, a neutron can be deflected by a magnetic field because it is a charged particle. The movement of the neutron will be influenced by the Lorentz force, which occurs when a charged particle moves through a magnetic field.
They are found to be deflected by electric and magnetic field in the specific direction in which a negatively charged particle would get deflected.
Any charged particle in motion especially not parallel to the magnetic field, current carrying conductor kept inclined or perpendicular to the magnetic field would get deflected. As far as electric field is concerned, even stationary charges would be displaced.
It would be induced to follow the lines of force in a clockwise spiral. As the lines of force at the equator are parallel to the surface of the Earth, the charged particle would be deflected northwards.
Yes, an alpha particle would be affected by a magnetic field because it has a charge. When moving through a magnetic field, the charged alpha particle will experience a force perpendicular to both its velocity and the magnetic field direction, leading it to move in a curved path.
J. J. Thomson discovered the electron using an experiment involving cathode rays and a magnetic field. When subjected to the magnetic field, the cathode ray was deflected. If the magnetic field was flipped, the cathode ray was deflected in the opposite direction. This proved that a cathode ray was a stream of negatively charged particles that would later be deemed electrons.
An alpha particle would move in a circular path due to its positive charge being acted upon by the magnetic field, as per the right-hand rule for moving charges in a magnetic field. This circular motion is known as cyclotron motion.
When the direction of the current in a wire is reversed in a magnetic field, the direction of the force acting on the wire also reverses. This causes the wire to move in the opposite direction within the magnetic field.
Stationary charge don't produce a magnetic field. because it has no velocity in it, without flow of electron we can't find electricity and for that we have no magnetic field for a stationary charge. It produce only electric field.
An alpha particle, which is a 24He nucleus, has a mass of 4 and a charge of +2. A beta particle has a charge of +1 or -1, depending on whether it is a positron (beta +) or an electron (beta -). It's mass is minuscule compared to the alpha particle, and it will undergo a comparatively huge deflection in the same field as an alpha particle would. Though the alpha particle has twice the charge as a beta particle, it has several thousand times the mass of that beta particle. As it is so much more massive than the beta particle, its inertia will be much more difficult to overcome even though it has twice the charge.
No, the deflection of ions in a magnetic field depends on their mass-to-charge ratio (m/z) rather than their speed. Heavier ions with larger mass-to-charge ratios will be deflected less than lighter ions with smaller mass-to-charge ratios. Therefore, ions traveling at the same speed but having different mass-to-charge ratios will be deflected by different amounts in the magnetic field.
Depending on the direction of the magnetic field and the charge on the particle, the charge would move in a circular fashion either clockwise or anticlockwise depending on the circumstance. Using the right hand palm (push) rule, find the direction of the force (palm) and the charge continues on that path in a circular motion. If the particle leaves the field, it continues in that direction traveling in a straight line unless under other influences.