answersLogoWhite

0

Sure, like any moving and charged particle.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

How does an alpha particle move in a magnetic field?

An alpha particle is a positively charged particle, so it will experience a force perpendicular to both its velocity and the magnetic field direction. This force causes the alpha particle to move in a circular path due to the magnetic field's influence. The radius of the circle will depend on the velocity of the alpha particle and the strength of the magnetic field.


How does an alpha particle move through a magnetic field?

An alpha particle is positively charged and will experience a force perpendicular to its velocity when moving through a magnetic field. This force will cause the alpha particle to follow a curved path due to the Lorentz force. The direction of the curved path will depend on the charge of the alpha particle and the orientation of the magnetic field.


Can you accelerate a stationary charge particle in a magnetic field?

No, a stationary charge particle cannot be accelerated in a magnetic field. In order to be affected by a magnetic field, the charged particle must be moving.


What would be the result of an alpha particle coming into a magnetic field?

An alpha particle would move in a circular path due to its positive charge being acted upon by the magnetic field, as per the right-hand rule for moving charges in a magnetic field. This circular motion is known as cyclotron motion.


What is the scientific principle behind particle accelators?

particle accelerators work by accelerating a charged particle in a magnetic field where the lines of magnetic flux are such that the particle is accelerated into a circular path. This is so that the force produced by such a motion and magnetic field is perpendicular to both the lines of magnetic flux and the velocity of the particle. The stronger the magnetic field and the faster the particle is moving, the more of a force is required (i.e stronger magnetic field) to keep the particle accelerating. Only a charged particle is affected by a magnetic field so only charged particles can be used inside a particle accelerators (i.e protons and electrons.) neutrons have a charge of zero and are not affected by magnetic fields.

Related Questions

How does an alpha particle move in a magnetic field?

An alpha particle is a positively charged particle, so it will experience a force perpendicular to both its velocity and the magnetic field direction. This force causes the alpha particle to move in a circular path due to the magnetic field's influence. The radius of the circle will depend on the velocity of the alpha particle and the strength of the magnetic field.


How does an alpha particle move through a magnetic field?

An alpha particle is positively charged and will experience a force perpendicular to its velocity when moving through a magnetic field. This force will cause the alpha particle to follow a curved path due to the Lorentz force. The direction of the curved path will depend on the charge of the alpha particle and the orientation of the magnetic field.


Does an alpha particle and beta particle has the same speed in a magnetic field?

Alpha particles with the same energy as beta particles have much less speed, magnetic field or no.


Can you accelerate a stationary charge particle in a magnetic field?

No, a stationary charge particle cannot be accelerated in a magnetic field. In order to be affected by a magnetic field, the charged particle must be moving.


Why beta and alpha particles deflected when they pass the magnetic field?

Alpha and beta particles are deflected by a magnetic field because they have charge and, as such, are affected by the electromagnetic interaction or force.


What would be the result of an alpha particle coming into a magnetic field?

An alpha particle would move in a circular path due to its positive charge being acted upon by the magnetic field, as per the right-hand rule for moving charges in a magnetic field. This circular motion is known as cyclotron motion.


What is the scientific principle behind particle accelators?

particle accelerators work by accelerating a charged particle in a magnetic field where the lines of magnetic flux are such that the particle is accelerated into a circular path. This is so that the force produced by such a motion and magnetic field is perpendicular to both the lines of magnetic flux and the velocity of the particle. The stronger the magnetic field and the faster the particle is moving, the more of a force is required (i.e stronger magnetic field) to keep the particle accelerating. Only a charged particle is affected by a magnetic field so only charged particles can be used inside a particle accelerators (i.e protons and electrons.) neutrons have a charge of zero and are not affected by magnetic fields.


A charged particle moving with a constant velocity enters a magnetic field?

when a charged particle is moving with some velocity it produces some magnetic field. If we place that charged particle in presence of external magnetic field it gets affected by that external field.


How does the Earth's magnetic field deflect charged particles?

A charged particle naturally changes direction in a magnetic field. This is because any charged particle produces a magnetic field when it is moving. And if the charged particle is moving through a magnetic field, the two fields (in this case the Earth's and the one created by the moving particle) interact to deflect the particle. The particle will be deflected "to the side" or laterally, and positively charged particles will be deflected in the opposite direction of negatively charged one.


What happens to beta radiation in a magnetic field?

Alpha waves are bent Gamma waves are not affected Beta waves are not bent


DO charged particles have a magnetic field?

if charge particle is in motion ,then it has magnetic field


Why are alpha and beta rays deflected in opposite directions in a magnetic field?

An alpha particle, which is a 24He nucleus, has a mass of 4 and a charge of +2. A beta particle has a charge of +1 or -1, depending on whether it is a positron (beta +) or an electron (beta -). It's mass is minuscule compared to the alpha particle, and it will undergo a comparatively huge deflection in the same field as an alpha particle would. Though the alpha particle has twice the charge as a beta particle, it has several thousand times the mass of that beta particle. As it is so much more massive than the beta particle, its inertia will be much more difficult to overcome even though it has twice the charge.