answersLogoWhite

0

Hydrogen ions (H⁺) flow back across the mitochondrial membrane primarily due to the electrochemical gradient created by the electron transport chain during cellular respiration. As electrons are transferred through protein complexes, protons are pumped from the mitochondrial matrix into the intermembrane space, generating a higher concentration of H⁺ ions outside the matrix. This gradient creates potential energy, which drives the flow of protons back into the matrix through ATP synthase, facilitating the synthesis of ATP from ADP and inorganic phosphate. This process is essential for efficient energy production in cells.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Continue Learning about Natural Sciences

What kinda ions are positively charged and can cross back and forth across the neuron cell membrane?

Positively charged ions like sodium (Na+) and potassium (K+) can cross back and forth across the neuron cell membrane through ion channels. These ions play a significant role in generating and propagating action potentials in neurons.


How does the cell use the charge differences that build up across the inner mitochondrial membrane during cellular respiration?

The charge differences across the inner mitochondrial membrane are used to generate ATP through a process called chemiosmosis. Protons are pumped across the membrane, creating a proton gradient. As protons flow back across the membrane through ATP synthase, ATP is produced. This process is essential for providing energy to the cell.


What happens as electrons are passed along the ETC?

As electrons are passed along the electron transport chain (ETC), they release energy. This energy is used to pump protons across the inner mitochondrial membrane, creating a proton gradient. The flow of protons back across the membrane drives ATP synthase to produce ATP.


Does the sodium potassium pump ejects two Na from the cell and then transports three K back into the cell in order to stabilize the resting membrane potential?

No, the sodium-potassium pump ejects three Na from the cell and transports two K back into the cell. This process helps maintain the concentration gradients of Na+ and K+ ions across the cell membrane, which is integral in stabilizing the resting membrane potential.


What is a proton gradient in biology?

A proton gradient in biology refers to the difference in proton (H⁺) concentration across a membrane, creating an electrochemical gradient. This gradient is crucial in processes like cellular respiration and photosynthesis, where it drives the synthesis of ATP via ATP synthase. The flow of protons back across the membrane, down their gradient, generates energy that is harnessed by cells for various biochemical processes.

Related Questions

When molecules are moving back and forth across the membrane will they ever stop moving?

Yes, in an isotonic solution the movement of molecules across the membrane will stop.


What ions are positively charged and can cross back and forth across neuron and cell membrane?

There are two ions that can cross the cell membrane. The positively charged sodium and potassium ions can cross back and forth across the neuron cell membrane.


What is a condition of osmosis where water moves evenly back and forth across a membrane?

Osmotic equilibrium is the condition where water molecules move evenly back and forth across a semipermeable membrane to balance the concentration of solutes on both sides of the membrane.


What kinda ions are positively charged and can cross back and forth across the neuron cell membrane?

Positively charged ions like sodium (Na+) and potassium (K+) can cross back and forth across the neuron cell membrane through ion channels. These ions play a significant role in generating and propagating action potentials in neurons.


How does the cell use the charge differences that build up across the inner mitochondrial membrane during cellular respiration?

The charge differences across the inner mitochondrial membrane are used to generate ATP through a process called chemiosmosis. Protons are pumped across the membrane, creating a proton gradient. As protons flow back across the membrane through ATP synthase, ATP is produced. This process is essential for providing energy to the cell.


What is protein motive force?

This is a force generated by complex H+ flow back into the matrix (across the inner membrane) via the proton translator domain.


Ions cannot cross back and forth across the neuron cell membrane?

Ions can cross the neuron cell membrane through ion channels that open and close in response to various stimuli, allowing for the movement of ions in and out of the cell. This movement is essential for action potentials and communication between neurons.


When hydrogen ions are pumped from the mitochondrial matrix across the inner membrane and into the intermembrane space the result is?

Hydrogen ions are pumped through the membrane in the final stage of ATP generation in the electron transport chain. The ions pumped through the membrane create a gradient and cause the hydrogen to "want" to pass back through the membrane. They do so through the protein channels in the membrane and attaches a phosphate to adenosine diphosphate to make adenosine triphosphate.


What is the proxomite source of energy for oxidative phosphorylation?

The proximate source of energy for oxidative phosphorylation is the proton gradient across the inner mitochondrial membrane. This gradient is established during the electron transport chain as electrons are passed along and protons are pumped across the membrane. The flow of protons back into the matrix through ATP synthase drives the production of ATP.


What happens as electrons are passed along the ETC?

As electrons are passed along the electron transport chain (ETC), they release energy. This energy is used to pump protons across the inner mitochondrial membrane, creating a proton gradient. The flow of protons back across the membrane drives ATP synthase to produce ATP.


Does the sodium potassium pump ejects two Na from the cell and then transports three K back into the cell in order to stabilize the resting membrane potential?

No, the sodium-potassium pump ejects three Na from the cell and transports two K back into the cell. This process helps maintain the concentration gradients of Na+ and K+ ions across the cell membrane, which is integral in stabilizing the resting membrane potential.


What is the Input and output of Chemiosmosis?

In chemiosmosis, the input primarily consists of protons (H+) that are actively transported across a membrane, creating a proton gradient. The output is the production of ATP, facilitated by ATP synthase as protons flow back across the membrane down their concentration gradient. This process is crucial in cellular respiration and photosynthesis, where energy from electron transport chains drives the synthesis of ATP.