Cu has a lower boiling point than CH3OH because its particles are less polar. the CH3OH molecules have to have more kinetic energy to break the bonds between them and the surrounding molecules.
The boiling point of methanol is lower than the boiling point of ethanol.
Condensation point is the same as boiling point of methanol: 65 °C, 338 K, 149 °F
Methanol has the highest boiling point among methane, chloromethane, and methanol. This is because methanol has stronger intermolecular forces (hydrogen bonding) compared to methane (only dispersion forces) and chloromethane (dipole-dipole forces).
Methanol has the following boiling points: 64.7°C, 338K and 148°F
Methanol has a much higher boiling point than methane due to hydrogen bonding. In methanol, the presence of an -OH (hydroxyl) group allows for strong intermolecular hydrogen bonds between methanol molecules, whereas methane only exhibits weaker van der Waals forces. These hydrogen bonds require more energy to break, resulting in a higher boiling point for methanol compared to methane.
Methenol does not exist, at least not in chemistry;However , if it is a misspelling of methanol (CH3OH, spelled with 'a') the boiling point is 65 °C, 338 K, 149 °F
Since oxygen has a higher electronegativity than nitrogen, the hydroxyl radical is more polar than the amide radical, and hence, creates a stronger electrostatic attraction between molecules and consequently a higher boiling point.
Methanol (CH3OH) is soluble in water because it can form hydrogen bonds with water molecules. However, it might not dissolve easily in water due to differences in polarity and size between methanol and water molecules. Methanol has a lower boiling point compared to water, so it tends to evaporate rather than form stable solutions with water.
The boiling point of methanol is lower than the boiling point of ethanol.
Condensation point is the same as boiling point of methanol: 65 °C, 338 K, 149 °F
The boiling point of methyl alcohol (methanol) is 64.7oC.
Methanol (CH3OH) has stronger intermolecular forces due to hydrogen bonding, leading to a higher boiling point compared to methanethiol (CH3SH), which only experiences weaker dispersion forces. Hydrogen bonding involves a stronger dipole-dipole attraction between the molecules of methanol, requiring more energy to overcome compared to the dispersion forces in methanethiol molecules.
Methanol has the highest boiling point among methane, chloromethane, and methanol. This is because methanol has stronger intermolecular forces (hydrogen bonding) compared to methane (only dispersion forces) and chloromethane (dipole-dipole forces).
Heptane has 7 carbon atoms. So it has a greater surface area than methanol. Therefor heptane has a higher boiling point.In general, all else being equal the higher the molecular weight, the higher the boiling point. The molecular weight of methanol is 32, the molecular weight of heptane is 100. So, ignoring everything but that, you'd expect heptane to have a higher boiling point than methanol.A better question might be "why is the boiling point of methanol so much higher than that of ethane, which has a similar molecular weight (30)?" The answer to that is hydrogen bonding.
You can find the methanol boiling point curve at various pressures in chemical engineering handbooks, thermodynamic databases, or online resources such as NIST Chemistry WebBook. These sources provide detailed information on the boiling points of methanol at different pressures.
Ethanol boiling point: 78.37 °C Methanol Boiling point: 64.7 °C Acetone Boiling point: 56 to 57 °C dichloromethane Boiling Point: 39.8-40.0°C Water Boiling Point: 100°C dichloromethane more volatile than the others
Methanol has the following boiling points: 64.7°C, 338K and 148°F