Kinetic Energy = 1/2 mv2 where m = mass and v = velocity A train has much more mass than a car. So even if they are travelling at the same speed, a train will have more kinetic energy than a car.
The formula for kinetic energy is: KE =( mv2)/2 m= mass (not weight) v= velocity A more massive car will have more kinetic energy than a lighter one traveling at the same speed. A faster moving car will have much more kinetic energy than an identical car moving slower.
The kinetic energy of a moving object is determined by its mass and speed. If two cars have different masses but the same speed, the car with the greater mass will have more kinetic energy. If they have the same mass but different speeds, the car moving faster will have more kinetic energy.
The wheels and engine components of a car use kinetic energy. When the car is in motion, kinetic energy is generated and transferred to these components to enable movement.
Kinetic energy is the energy of motion, KE=mv2/2.Thermal energy is different from kinetic energy.Thermal energy is associated with the temperature of a body, the heat gained by increasing the temperature. That heat gives molecules more kinetic energy and more potential energy and may also give molecules more more electronic energy.
Kinetic and Potential EnergyHistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it has very little kinetic energy.Kinetic EnergyThe word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. As the train accelerates down the hill the potential energy is converted into kinetic energy. There is very little potential energy at the bottom of the hill, but there is a great amount of kinetic energy.TheoryWhen the train is at the top and bottom of the hill there is not any potential or kinetic energy being used at all. The train at the bottom of the first drop should have enough energy to get back up the height of the lift hill. The "Act of Faith" in riding these amazing rides which seems more of a phenomena that is only a theory. In practices, the train never could make it back up the hill because of dissipative forces. Friction and air resistance, and even possible mid-course breaks, are dissipative forces causing the theory to be changed but not destroyed. These forces make it impossible for the train to have enough energy to make it back up the lift hill's height. In the absence of the dissipative forces the potential and kinetic energies(mechanical energy) will remain the same. Since the mechanical energy is destroyed by the forces, the first hill is always the highest
A train has more kinetic energy than a car traveling at the same speed because the train has significantly more mass. Kinetic energy is directly proportional to an object's mass - the more mass an object has, the more kinetic energy it will possess at a given speed.
The kinetic energy of the 12000-kg train would be much greater than that of the 900-kg compact car, as kinetic energy is directly proportional to the mass of the object. Therefore, the train would have significantly more kinetic energy than the compact car when traveling at the same speed.
While the car and train may be moving at the same speed, their kinetic energies can be different because kinetic energy depends on both the mass and velocity of an object. The train typically has a much larger mass than a car, so even if they are both moving at the same speed, the train will have a greater kinetic energy due to its higher mass.
An example of kinetic energy is a moving car. As the car is in motion, it possesses kinetic energy due to its velocity. The faster the car is moving, the more kinetic energy it has.
A car has more kinetic energy than a bike because it has a greater mass and generally moves at higher speeds. Kinetic energy is dependent on both an object's mass and its velocity, so the larger, faster-moving car will have more kinetic energy compared to a smaller, slower-moving bike.
No. A real car IS not kinetic energy, but it HAS kinetic energy.No. A real car IS not kinetic energy, but it HAS kinetic energy.No. A real car IS not kinetic energy, but it HAS kinetic energy.No. A real car IS not kinetic energy, but it HAS kinetic energy.
A car traveling at a higher speed will have more kinetic energy than a car moving at a slower speed. So, the car with the most kinetic energy would be the one traveling at the highest speed.
A larger car will have more kinetic energy due to its greater mass and speed, leading to a longer stopping distance compared to a smaller car with less kinetic energy. The larger car will require more distance to decelerate and come to a stop due to its higher kinetic energy.
No, it's the other way round. More speed means more kinetic energy.No, it's the other way round. More speed means more kinetic energy.No, it's the other way round. More speed means more kinetic energy.No, it's the other way round. More speed means more kinetic energy.
by have chemical energy which is in food.chemical energy (by eating food) - kinetic energy which is when the chemical energy is released inside of you and kind of automatically gives out your kinetic energy!
Kinetic energy is anything that was in a resting position and is now moving. The resting position it is in is called gravitational potential energy.
A slow moving car may have more kinetic energy than a fast moving motorcycle if the car has a greater mass. Kinetic energy is proportional to both mass and velocity, so a higher mass can compensate for a lower velocity in terms of total kinetic energy.