It's not just Cesium 137. Of the 3000 or so known isotopes, MOST undergo radioactive decay. Only a fairly small percentage of the isotopes are stable. Usually, stability is achieved when the amount of neutrons, compared to the amount of protons, is "just right" - not too few, not too many. For the heavier elements (beyond lead), stability is no longer possible for ANY isotope.
When an isotope is stable, it does not undergo radioactive decay. Stable isotopes have a balanced number of protons and neutrons in the nucleus, which prevents them from spontaneously changing into another element over time.
No stable isotopes.
Yes, strontium can undergo radioactive decay. One common isotope of strontium, strontium-90, is a radioactive isotope that decays through beta decay. It is a byproduct of nuclear fission and can be harmful to living organisms due to its radioactive nature.
Before a radioactive atom ceases to undergo further radioactive decay, it must reach a stable configuration or decay into a non-radioactive isotope through the emission of particles or energy. This process continues until the atom reaches a state of stability where it no longer emits radiation.
The average time needed for half of the nuclei in a sample of a radioactive substance to undergo radioactive decay is called the "half-life." This period is a characteristic property of each radioactive isotope and varies significantly between different substances. During one half-life, the quantity of the radioactive material reduces to half of its original amount.
When an isotope is stable, it does not undergo radioactive decay. Stable isotopes have a balanced number of protons and neutrons in the nucleus, which prevents them from spontaneously changing into another element over time.
radioactive decay
No stable isotopes.
Yes, strontium can undergo radioactive decay. One common isotope of strontium, strontium-90, is a radioactive isotope that decays through beta decay. It is a byproduct of nuclear fission and can be harmful to living organisms due to its radioactive nature.
The lightest "element" that can undergo radioactive decay is the isotope hydrogen-3, which undergoes beta decay. The lightest element with no radioactively stable isotopes is technetium, and its isotopes have different modes of decay.
The ratio neutrons/protons in radioactive isotopes is the cause of their innstability.
Before a radioactive atom ceases to undergo further radioactive decay, it must reach a stable configuration or decay into a non-radioactive isotope through the emission of particles or energy. This process continues until the atom reaches a state of stability where it no longer emits radiation.
There are over twenty known isotopes of argon. Of these all but three are radioactive and decay. Of naturally occurring argon, very nearly 100% is not radioactive, with only traces of one radioactive isotope found.
friends are like seashells you collect on the way
Radioisotopes are unstable because they have an imbalance of protons and neutrons in their atomic nuclei. This imbalance causes them to be prone to undergo radioactive decay in order to achieve a more stable configuration.
No, not all atoms decay over time. Some atoms are stable and do not undergo radioactive decay.
No, not all elements decay over time. Some elements are stable and do not undergo radioactive decay.