Stress is the amount of force per unit area (N/mm2; lb/ft2)
Strain is the unitless change in length resulting from the application of a force (movement in unit length / original unit length)
Young's Modulus relates the two (stress / strain)
a stress strain curve and a load displacement curve is pretty much the same thing, given the data is from the same specimen. its just the stress (force/area) is divided by a constant area and the strain (change in length/original length) is divided by a constant original length. therefore your curve would pretty much look the same as dividing by a constant will not change your graph. hope this explains your question
Stress is the tension/compression force per unit area.Strain is the ratio of change of length to the original length, due to applied force.Tension is the applied force which tends to elongate the body.
stress= force/C.S.A. so fracture stress = force at fracture / Cross.Sectional.Area.
depresion etc.
fatigue
stress strain curve details
Wherever there is stress there is strain. In the example you noted, if heated bar expands freely without one end constained it changes its strain without stress; that strain is called eigenstrain. If the same bar is held rigidly then the eigenstrain resisted and you get stress and strain. So stress cannot exist without strain; but strain can exist without stress if it is eigenstrain.
To calculate strain energy in a material, you can use the formula: Strain Energy 0.5 x Stress x Strain. Stress is the force applied to the material, and strain is the resulting deformation. Multiply stress and strain, then divide by 2 to find the strain energy.
To calculate strain from stress, you can use the formula: Strain Stress / Young's Modulus. Stress is the force applied to an object, while Young's Modulus is a measure of the stiffness of the material. By dividing the stress by the Young's Modulus, you can determine the strain, which is the amount of deformation the material undergoes in response to the stress.
To find strain from stress in a material, you can use the formula: Strain Stress / Young's Modulus. Young's Modulus is a measure of the stiffness of a material. By dividing the stress applied to the material by its Young's Modulus, you can calculate the resulting strain.
stress is load per unit area; when an object is loaded it is under stress and strain and it stretches (strains) until it breaks at its ultimate strength. Stress i srelated to strain in the elastic region by Hooke's law: stress = elastic modulus times strain where modulus is a property of the material and strain is deflection over length
stress is directly proportional to strain up to the proportional limit. Their ratio is young's modulus.
The strain gage indicates strain, and the stress is from Hooke's law; stress = modulus times strain so you need to know the modulus of elasticity
The secant modulus is the total stress or strain on an object as described by a stress-strain graph. The tangent modulus is the marginal strain.
To calculate strain from stress in a material, you can use the formula: Strain Stress / Young's Modulus. Stress is the force applied to the material, and Young's Modulus is a measure of the material's stiffness. By dividing the stress by the Young's Modulus, you can determine the amount of deformation or strain the material undergoes under the applied stress.
When you have stress you also have strain - stress cannot exist without strain, so they come at the same time You can have strain without stress - like expanding something under temperature in a free state. If the state is not free, then you have stress occurring at the same time.
difference between Strain-stress diagram of copper and steel?