The buoyant force accounts for the missing 2 N when the rock is in water.
The 2 N is the weight of the volume of water equal to the volume of the rock ...
the water that the rock 'displaces' (pushes aside) when it enters the water.
The buoyant force is equal to the weight of the fluid displaced. In this case, there are 2 Newtons of force, leading to the buoyant force equaling 2 Newtons.
The upward force acting on an object submerged in a fluid is called buoyant force. It is equal to the weight of the fluid displaced by the object.
The amount of buoyant force is equal to the weight of the displaced water. The VOLUME of the displaced water is equal to the part of the solid that is submerged - thus, the buoyant force is equal to this volume, times the density of the water.
Buoyant force acts upward on an object submerged in water due to the difference in pressure exerted by the water at different depths. The pressure at greater depths is higher, leading to a greater force pushing upward on the object, thus creating the buoyant force that opposes gravity. This buoyant force helps objects float or experience less weight when submerged in water.
Archimedes' Principle is the scientific law that predicts the amount of buoyant force on a submerged or floating object. It states that the buoyant force on an object is equal to the weight of the fluid displaced by the object.
1 newton.
The buoyant force is equal to the weight of the fluid displaced. In this case, there are 2 Newtons of force, leading to the buoyant force equaling 2 Newtons.
The submerged will float
The upward force acting on an object submerged in a fluid is called buoyant force. It is equal to the weight of the fluid displaced by the object.
The amount of buoyant force is equal to the weight of the displaced water. The VOLUME of the displaced water is equal to the part of the solid that is submerged - thus, the buoyant force is equal to this volume, times the density of the water.
Buoyant force acts upward on an object submerged in water due to the difference in pressure exerted by the water at different depths. The pressure at greater depths is higher, leading to a greater force pushing upward on the object, thus creating the buoyant force that opposes gravity. This buoyant force helps objects float or experience less weight when submerged in water.
The buoyant force is zero when the object is just touching the liquid. As the object displaces more volume, the buoyant force increases until the object is completely submerged. Once the object is submerged, it doesn't matter how deep it is, the buoyant force remains constant.
Archimedes' Principle is the scientific law that predicts the amount of buoyant force on a submerged or floating object. It states that the buoyant force on an object is equal to the weight of the fluid displaced by the object.
When the pressure at the bottom of a submerged object is greater than the pressure at the top, a buoyant force is produced. This buoyant force is a result of the difference in pressure creating an upward force on the object, known as buoyancy, which helps keep the object afloat.
If the weight of the object is higher than the buoyant force the object SINKS. And the opposite happens if the weight is lower than the buoyant force. If it is equal, the object neither sink nor float, it is neutrally buoyant.
The buoyant force acting on a fully submerged object is equal in magnitude to the weight of the water displaced. This is known as Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the submerged object.
The buoyant force on any object in water is equal to the weight of the displaced water, regardless of how much of the object is submerged.