F = M A
A = F / M
If there are no other forces on the mass, and nothing to resist its motion,
then it accelerates in the direction of the force, at
16/2 = 8 meters per second2
The relationship between force applied to an object and its mass is given by Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. This can be mathematically represented as F = ma, where F is the force applied, m is the mass of the object, and a is the resulting acceleration.
Force equals mass times acceleration, according to Newton's second law of motion. This means that the acceleration of an object is directly proportional to the force applied to it, and inversely proportional to its mass. In simpler terms, the larger the force applied to an object, the greater its acceleration, while the greater the mass of the object, the smaller its acceleration for the same force.
As per Newton's first law of motion, if the applied force remains the same, an increase in mass will result in a decrease in acceleration. In contrast, if the acceleration were to remain the same when the mass increases, there must be a greater force applied.
Newton's second law relates acceleration to mass and force: F = ma, where F is the force applied to an object, m is the mass of the object, and a is the resulting acceleration. The law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass.
Newton's second law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In simpler terms, the greater the force applied to an object, the greater its acceleration will be, and the heavier the object, the smaller its acceleration will be for the same force.
When the applied force increases, the acceleration increases When the applied force decreases, the acceleration decreases. This can be explained using Newton's second law of motion. F = ma
The relationship between force applied to an object and its mass is given by Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. This can be mathematically represented as F = ma, where F is the force applied, m is the mass of the object, and a is the resulting acceleration.
You can find acceleration by dividing the force applied to an object by the mass of the object. The equation is: acceleration = force / mass. This relationship is described by Newton's second law of motion.
Force equals mass times acceleration, according to Newton's second law of motion. This means that the acceleration of an object is directly proportional to the force applied to it, and inversely proportional to its mass. In simpler terms, the larger the force applied to an object, the greater its acceleration, while the greater the mass of the object, the smaller its acceleration for the same force.
As per Newton's first law of motion, if the applied force remains the same, an increase in mass will result in a decrease in acceleration. In contrast, if the acceleration were to remain the same when the mass increases, there must be a greater force applied.
This is an example of Newton's second law of motion, which states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. This law is represented by the equation F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration.
Newton's second law relates acceleration to mass and force: F = ma, where F is the force applied to an object, m is the mass of the object, and a is the resulting acceleration. The law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass.
Newton's second law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In simpler terms, the greater the force applied to an object, the greater its acceleration will be, and the heavier the object, the smaller its acceleration will be for the same force.
Newton's 2nd law states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. Mathematically, it is represented as F = ma, where F is the force, m is the mass, and a is the acceleration of the object.
The acceleration of an object is directly proportional to the force applied to it. This relationship is described by Newton's second law of motion, which states that the acceleration of an object is equal to the force applied to it divided by its mass. Simply put, the greater the force applied to an object, the greater its acceleration will be.
In physics, the relationship between mass, force, and acceleration is described by Newton's second law of motion. This law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In other words, the greater the force applied to an object, the greater its acceleration will be, and the greater the mass of an object, the smaller its acceleration will be for a given force.
If you increase the mass of an object, its acceleration will decrease, assuming the force applied remains constant. This is described by Newton's second law of motion, F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration.