If it is thrown at an angle, at the top of its path, its vertical velocity will be zero, however its horizontal velocity will be the same as its initial horizontal velocity minus whatever loss in speed as a result of air friction at that point. We won't know what that is without more information.
The speed of a ball thrown upward upon striking the ground will be the same as the speed at which it was thrown, but in the opposite direction. The speed of a ball thrown downward upon striking the ground will be faster than the speed at which it was thrown due to the acceleration from gravity.
The speed of the ball is greatest when it is thrown upward and decreases as it reaches the peak of its trajectory. The speed continues to decrease as the ball falls back down due to the force of gravity pulling it towards the ground.
The ball thrown straight down from a bridge will experience an acceleration due to gravity. On Earth, this acceleration is approximately 9.81 m/s^2 and acts in the downward direction. The acceleration will cause the ball to increase in speed as it falls towards the ground.
-- The only horizontal force on a thrown ball is the force of air resistance, so the horizontal acceleration is very small, and the horizontal speed stays almost constant. -- The vertical force on a thrown ball is the force of gravity, so the ball accelerates straight down at the acceleration of gravity. -- The result of unequal horizontal and vertical components of acceleration is a curved path.
A ball thrown straight will curve downward due to the pull of gravity acting on it. As the ball moves forward, gravity exerts a downward force on it, causing it to follow a curved path towards the ground. This downward curve is influenced by factors such as air resistance and the initial velocity and angle at which the ball was thrown.
The speed of a ball thrown upward upon striking the ground will be the same as the speed at which it was thrown, but in the opposite direction. The speed of a ball thrown downward upon striking the ground will be faster than the speed at which it was thrown due to the acceleration from gravity.
The speed of the ball is greatest when it is thrown upward and decreases as it reaches the peak of its trajectory. The speed continues to decrease as the ball falls back down due to the force of gravity pulling it towards the ground.
The ball thrown straight down from a bridge will experience an acceleration due to gravity. On Earth, this acceleration is approximately 9.81 m/s^2 and acts in the downward direction. The acceleration will cause the ball to increase in speed as it falls towards the ground.
Yes. An example of this would be a ball thrown straight up; at the very peak of its travel, it's not moving either up or down and therefore has an instantaneous velocity of zero.
If there was no gravity, the ball would not fall back down to the ground after being thrown. It would continue in a straight line with the same speed and direction it was thrown with until it was affected by another force.
-- The only horizontal force on a thrown ball is the force of air resistance, so the horizontal acceleration is very small, and the horizontal speed stays almost constant. -- The vertical force on a thrown ball is the force of gravity, so the ball accelerates straight down at the acceleration of gravity. -- The result of unequal horizontal and vertical components of acceleration is a curved path.
A ball thrown straight will curve downward due to the pull of gravity acting on it. As the ball moves forward, gravity exerts a downward force on it, causing it to follow a curved path towards the ground. This downward curve is influenced by factors such as air resistance and the initial velocity and angle at which the ball was thrown.
because there if speed is constant than ball never come back to earth hence speed of ball is not constant
... and what is the question? The second ball should arrive at the floor a second after the first, both should have the same speed.
When a ball is thrown into the air, it encounters drag. Drag is the opposing force acting in the opposite direction of the ball. Drag slows down the ball's speed.
probobly the tennis ball because it is lighter
Its initial speed cannot be 20 m, as stated in the question. Secondly, if the initial speed is correctly given, then there is no need to calculate it!