The speed of a ball thrown upward upon striking the ground will be the same as the speed at which it was thrown, but in the opposite direction. The speed of a ball thrown downward upon striking the ground will be faster than the speed at which it was thrown due to the acceleration from gravity.
A ball thrown straight will curve downward due to the pull of gravity acting on it. As the ball moves forward, gravity exerts a downward force on it, causing it to follow a curved path towards the ground. This downward curve is influenced by factors such as air resistance and the initial velocity and angle at which the ball was thrown.
Every object falls downward when thrown up due to the force of gravity. Gravity is a fundamental force that pulls objects towards the center of the Earth. When an object is thrown up, gravity acts to slow down and eventually reverse its motion, causing it to fall back towards the ground.
The force of gravity acts downward on the ball, causing it to slow down and eventually fall back to the ground.
The acceleration of the ball just before it hits the ground is equal to the acceleration due to gravity, which is approximately 9.81 m/s^2 downward.
The acceleration of the object would still be g downward, regardless of the angle at which it is thrown upward. The acceleration due to gravity always acts in the downward direction towards the center of the Earth. The only difference would be the horizontal component of the velocity due to the initial angle of the throw.
A ball thrown straight will curve downward due to the pull of gravity acting on it. As the ball moves forward, gravity exerts a downward force on it, causing it to follow a curved path towards the ground. This downward curve is influenced by factors such as air resistance and the initial velocity and angle at which the ball was thrown.
The thrown ball will (usually) have the highest velocity as the acceleration (resultant of force) used to throw it exceeds that of the other two balls. The ball thrown upward will have a higher downward velocity than the dropped ball even though their accelerations (due to gravity) are the same, as it has more time to travel downward. Although, If the ball thrown upward is thrown high enough, it may even travel faster than the ball thrown downward if the downward throw's force is not enough to beat the ball's terminal velocity (quite a bit of height would be required though).
Every object falls downward when thrown up due to the force of gravity. Gravity is a fundamental force that pulls objects towards the center of the Earth. When an object is thrown up, gravity acts to slow down and eventually reverse its motion, causing it to fall back towards the ground.
The force of gravity acts downward on the ball, causing it to slow down and eventually fall back to the ground.
The acceleration of the ball just before it hits the ground is equal to the acceleration due to gravity, which is approximately 9.81 m/s^2 downward.
The acceleration of the object would still be g downward, regardless of the angle at which it is thrown upward. The acceleration due to gravity always acts in the downward direction towards the center of the Earth. The only difference would be the horizontal component of the velocity due to the initial angle of the throw.
It doesn't matter whether the object is thrown down, up, horizontally, or diagonally. Once it leaves the thrower's hand, it is accelerated downward by an amount equal to acceleration of gravity on the planet where this is all happening. On Earth, if you throw an object horizontally, it accelerates downward at the rate of 9.8 meters per second2 ... just as it would if you simply dropped it. Whether it's dropped or thrown horizontally, it hits the ground at the same time.
The bottle will continue to move forward due to inertia even after being thrown from a speeding car. It will follow a curved trajectory due to the combination of its forward speed and the downward pull of gravity.
The downward acceleration of a thrown object in projectile motion is constant and equal to the acceleration due to gravity, which is approximately 9.81 m/s^2 on Earth. This acceleration acts vertically downward and affects the vertical motion of the object while the horizontal motion remains unaffected.
The largest variation from two objects moving downward either 'dropped' or 'thrown' thereby allowing earth's natural gravity to increase until an object approaches and/or reaches maximum velocity. The difference in the two examples, 'dropped' or 'thrown' objects merely illustrates that the "thrown" object will reach maximum velocity quicker than the 'dropped' object.
When a basketball is thrown upward, it is acted upon by gravity, which pulls it back down towards the ground. As it moves upward, its velocity decreases until it reaches its peak height and momentarily stops, then gravity causes it to accelerate back downward due to the force of gravity.
From the time the object leaves your hand, its acceleration doesn't change at all ... it remains constant at 9.8 meters (32.2 feet) per second2 downward. Well, we have to admit that the acceleration does change to zero once the object hits the ground.