120×10^-6
The coefficient of linear expansion is a constant value that quantifies how much a material expands per degree Celsius increase in temperature. The actual expansion of an object can be calculated by multiplying the coefficient of linear expansion by the original length of the object and the temperature change.
-39 degrees celsius to 450 degrees celsius
The coefficient of thermal expansion of air is approximately 0.00367 per degree Celsius.
The volumetric thermal expansion coefficient of air is approximately 0.00367 per degree Celsius.
The coefficient of volume expansion of turpentine is typically around 9 x 10^-4 per degree Celsius. This coefficient indicates how much the volume of turpentine will increase for a one-degree Celsius increase in temperature.
The coefficient of linear expansion is a constant value that quantifies how much a material expands per degree Celsius increase in temperature. The actual expansion of an object can be calculated by multiplying the coefficient of linear expansion by the original length of the object and the temperature change.
-39 degrees celsius to 450 degrees celsius
The coefficient of thermal expansion of air is approximately 0.00367 per degree Celsius.
The volumetric thermal expansion coefficient of air is approximately 0.00367 per degree Celsius.
The coefficient of thermal expansion of ethanol at 20 degrees Celsius, in volumetric terms, is 750*10-6 per Kelvin.The coefficient of thermal expansion of ethanol at 20 degrees Celsius, in volumetric terms, is 750*10-6 per Kelvin.The coefficient of thermal expansion of ethanol at 20 degrees Celsius, in volumetric terms, is 750*10-6 per Kelvin.The coefficient of thermal expansion of ethanol at 20 degrees Celsius, in volumetric terms, is 750*10-6 per Kelvin.
The coefficient of volume expansion of turpentine is typically around 9 x 10^-4 per degree Celsius. This coefficient indicates how much the volume of turpentine will increase for a one-degree Celsius increase in temperature.
The coefficient of thermal expansion for oxygen is approximately 0.0012 per degree Celsius. This means that for every one degree Celsius increase in temperature, oxygen will expand by 0.12% of its original volume.
The volume coefficient of expansion for ice is approximately 0.090 × 10^-3 per degree Celsius. This means that for every degree Celsius increase in temperature, ice expands by about 0.090 × 10^-3 of its original volume.
The thermal expansion coefficient for motor spirit, also known as gasoline, is approximately 0.00096 per degree Celsius. This means that for every degree Celsius increase in temperature, gasoline will expand by 0.00096 of its original volume.
The coefficient of linear expansion DOES not depend on the length. Each material has a certain value for its coeeficient of linear expansion. The length of the material dictates how much it will expand linearly for a given rise in temperature. L" = L'(1 + a x (T'' - T')) That is the length at temperature T'' which is higher than temperature T' is given by the length L' at temperature T' multiplied by the quantity [1 + a x (T" - T')], where a is the coefficient of linear expansion which is constant for a given material. Thus if the temperature difference T" - T' is large then the expansion will be large which means L" - L' will be large. Likewise if the original length L' is large, then the corresponding expanded length L" will be large
The thermal expansion coefficient of ammonia is approximately 0.0045 K^-1 at 20 degrees Celsius. This coefficient represents how much the volume of ammonia will expand per degree of temperature increase.
The coefficient of linear expansion for copper is around 16.5 x 10^-6 per degree Celsius. This means that for every degree Celsius increase in temperature, a one-meter length of copper pipe will expand by 16.5 micrometers in length.