yes
If the freezer is stationary, the forces acting on it are likely balanced. The gravitational force pulling it downward is likely balanced by the normal force exerted by the floor, as well as any frictional forces that may oppose its motion. If the freezer is accelerating or moving, the forces may not be balanced.
Yes, if a freezer is at a constant velocity or stationary, there are balanced forces acting on it. Typically, these forces include the gravitational force acting downward and the normal force acting upward from the surface on which the freezer rests.
No, balanced forces do not cause any change in an object's state of motion. When the forces acting on an object are balanced, the object will either remain at rest or continue moving at a constant velocity.
The forces acting on a stationary boat in still water are gravity acting downwards, buoyancy acting upwards, and drag acting to oppose any external forces like wind or current. These forces are balanced when the boat is stationary.
false
If the freezer is stationary, the forces acting on it are likely balanced. The gravitational force pulling it downward is likely balanced by the normal force exerted by the floor, as well as any frictional forces that may oppose its motion. If the freezer is accelerating or moving, the forces may not be balanced.
Yes, if a freezer is at a constant velocity or stationary, there are balanced forces acting on it. Typically, these forces include the gravitational force acting downward and the normal force acting upward from the surface on which the freezer rests.
Either there are none, or if there are any, then the whole group of forces is balanced.
No, balanced forces do not cause any change in an object's state of motion. When the forces acting on an object are balanced, the object will either remain at rest or continue moving at a constant velocity.
This is called balanced forces and no acceleration is present.
The forces acting on a stationary boat in still water are gravity acting downwards, buoyancy acting upwards, and drag acting to oppose any external forces like wind or current. These forces are balanced when the boat is stationary.
false
All forces acting upon an object are balanced when the net force on the object is zero. This occurs when the vector sum of all the forces acting on the object in any direction is zero, resulting in the object either being at rest or moving at a constant velocity.
Not at all. The object is at rest only because the forces are balanced.
When an object changes direction, the forces acting on the object are typically unbalanced. This change in direction indicates that there is a net force acting on the object, causing it to accelerate or decelerate in the new direction. Balanced forces would result in a constant velocity without any change in direction.
A balanced force has no effect on any object.
When a system is in isostasy, downward gravity and upward buoyancy are balanced.