Yes indeed, Sound waves will have alternate compression and rarefaction pressures. The air pressure goes above and below the average air pressure.
No, compressional waves require a medium to travel through, so they cannot travel through a vacuum where there is no matter. Sound waves, which are compressional waves, cannot propagate through a vacuum.
Compressional waves are also known as longitudinal waves, where particles move back and forth in the same direction as the wave. These waves are characterized by the compression and rarefaction of the medium they travel through. Examples of compressional waves include sound waves and seismic waves.
In solids, sound travels through the vibration of molecules in a compressional wave. In liquids, sound also travels through compressional waves but with less resistance to movement compared to solids. In gases, sound travels through the propagation of pressure waves created by vibrating molecules.
Electromagnetic waves can be either transverse or compressional, depending on their polarization. Transverse waves have oscillations perpendicular to the direction of propagation, while compressional waves have oscillations parallel to the direction of propagation. For example, light waves are transverse, while sound waves are compressional.
Transverse waves and compressional waves are both types of mechanical waves that transfer energy through a medium. The main difference is in the direction of particle motion: transverse waves have particles that move perpendicular to the wave's direction, while compressional waves have particles that move parallel to the wave's direction.
Sound Waves
Sound Waves
Sound waves are compression waves because the molecules of air are compressed.
Compressional waves are waves that produce compression and rarefaction when traveling through a medium. Water waves are not considered as compressional waves.
Compressional, gasses can be compressed but cannot be wiggled side to side.
solids because the molecules/atoms are closer to each other.
Seismic waves can be either transverse or compressional. P-waves are compressional waves that travel fastest, while S-waves are transverse waves that travel slower. Both types of waves are generated by earthquakes and used to study the Earth's interior.
No, compressional waves require a medium to travel through, so they cannot travel through a vacuum where there is no matter. Sound waves, which are compressional waves, cannot propagate through a vacuum.
primary waves or compressional waves
Compressional waves are also known as longitudinal waves, where particles move back and forth in the same direction as the wave. These waves are characterized by the compression and rarefaction of the medium they travel through. Examples of compressional waves include sound waves and seismic waves.
In solids, sound travels through the vibration of molecules in a compressional wave. In liquids, sound also travels through compressional waves but with less resistance to movement compared to solids. In gases, sound travels through the propagation of pressure waves created by vibrating molecules.
Electromagnetic waves can be either transverse or compressional, depending on their polarization. Transverse waves have oscillations perpendicular to the direction of propagation, while compressional waves have oscillations parallel to the direction of propagation. For example, light waves are transverse, while sound waves are compressional.