answersLogoWhite

0

Since angular acceleration is in radians per second squared, which is change in angular speed over time, we know that α=ω/t, where α is angular acceleration, ω is angular speed, and t is time (assuming α is constant.)

ω is measured in radians per second. If me multiply ω by r, which is the radius of the circle the object is acceleration around, we get ωr, which has units of (radians*radius)/second. Since the angle in radians times the radius gives the distance, these units are equivalent to meters/second, so ωr = v.

Therefore, α=(v/r)/t=v/rt.

Acceleration (a) is v/t, so α=(v/t)(1/r)=a/r.

The equation would then be:

α=a/r, or a=rα (Where α is angular acceleration, a is acceleration, and r is the radius.)

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

How can you derive the formula for force (F) using the equation fma, which relates force (F), mass (m), and acceleration (a)?

To derive the formula for force (F) using the equation fma, you can rearrange the equation to solve for force. By dividing both sides of the equation by mass (m), you get F ma, where force (F) is equal to mass (m) multiplied by acceleration (a). This formula shows the relationship between force, mass, and acceleration.


How do you derive the formula for cetripital acceleration?

That is done via calculus. Specifically, take the movement over a small distance, calculate the change in velocity divided by the time, and figure out what happens if the time interval gets smaller and smaller - as they say in calculus, "get the limit of the acceleration as the time tends towards zero".


How do you derive the 3rd equation of motion?

The third equation of motion can be derived by integrating the equation of acceleration with respect to time. Starting with ( a = dv/dt ), integrating both sides with respect to time will give ( v = u + at ), where ( v ) is the final velocity, ( u ) is the initial velocity, ( a ) is the acceleration, and ( t ) is the time taken.


How do you derive units for acceleration?

Acceleration is the rate of change of velocity over time. By dividing a unit of velocity by a unit of time, we can derive the unit of acceleration. For example, if velocity is measured in meters per second (m/s) and time is measured in seconds (s), acceleration would be in meters per second squared (m/s^2).


Derive the equation for instantaneous average acceleration vector?

The instantaneous average acceleration vector is given by the derivative of the velocity vector with respect to time. Mathematically, it can be written as ( \overrightarrow{a}(t) = \lim_{{\delta t \to 0}} \frac{{\overrightarrow{v}(t + \delta t) - \overrightarrow{v}(t)}}{{\delta t}} ), where ( \overrightarrow{a}(t) ) is the acceleration vector at time ( t ) and ( \overrightarrow{v}(t) ) is the velocity vector at time ( t ).

Related Questions

How can you derive the formula for force (F) using the equation fma, which relates force (F), mass (m), and acceleration (a)?

To derive the formula for force (F) using the equation fma, you can rearrange the equation to solve for force. By dividing both sides of the equation by mass (m), you get F ma, where force (F) is equal to mass (m) multiplied by acceleration (a). This formula shows the relationship between force, mass, and acceleration.


How do you derive the formula for cetripital acceleration?

That is done via calculus. Specifically, take the movement over a small distance, calculate the change in velocity divided by the time, and figure out what happens if the time interval gets smaller and smaller - as they say in calculus, "get the limit of the acceleration as the time tends towards zero".


How do you derive the 3rd equation of motion?

The third equation of motion can be derived by integrating the equation of acceleration with respect to time. Starting with ( a = dv/dt ), integrating both sides with respect to time will give ( v = u + at ), where ( v ) is the final velocity, ( u ) is the initial velocity, ( a ) is the acceleration, and ( t ) is the time taken.


What is clausius mossotti equation?

derive clausious mossotti equation


Derive emf equation of a DC machine?

equation of ac machine


Derive the equation of mobility carrier?

help plzz


In what branch of math would one derive an equation?

Philosophy of Mathematics is a place in math where on would derive an equation. It is the branch of philosophy that studies the: assumptions, foundations, and implications of mathematics.


How do you derive units for acceleration?

Acceleration is the rate of change of velocity over time. By dividing a unit of velocity by a unit of time, we can derive the unit of acceleration. For example, if velocity is measured in meters per second (m/s) and time is measured in seconds (s), acceleration would be in meters per second squared (m/s^2).


What is general gas equation and derive it?

General gas Equation is PV=nRT According to Boyls law V


Derive the equation for average value of DC?

The equation for the average over time T is integral 0 to T of I.dt


Derive the balancing equation of wheatstone bridge?

R1/r2=r3/r4


Derive the equation for instantaneous average acceleration vector?

The instantaneous average acceleration vector is given by the derivative of the velocity vector with respect to time. Mathematically, it can be written as ( \overrightarrow{a}(t) = \lim_{{\delta t \to 0}} \frac{{\overrightarrow{v}(t + \delta t) - \overrightarrow{v}(t)}}{{\delta t}} ), where ( \overrightarrow{a}(t) ) is the acceleration vector at time ( t ) and ( \overrightarrow{v}(t) ) is the velocity vector at time ( t ).