Yes, that can be one contributing factor.
The difference between terminal speed and terminal velocity is really simple. Terminal speed can be used to refer to the maximum speed an object can reach before factors like friction prevent anymore speed to be gained. Terminal velocity, however, generally refers to the rate at which this speed was gained.
Terminal velocity of an object can be determined by balancing the forces acting on it. When the force of gravity pulling the object down is equal to the force of air resistance pushing up, the object reaches its terminal velocity. This can be calculated using the object's weight, surface area, and air density.
Terminal velocity is determined by the balance between gravitational force pulling an object downward and air resistance opposing its motion. Factors influencing terminal velocity include the object's weight, its surface area exposed to air resistance, and the density of the medium through which it is falling. Increasing any of these factors can increase terminal velocity.
Terminal velocity is the speed an object reaches when the force of gravity is balanced by the force of air resistance. At terminal velocity, the object no longer accelerates and falls at a constant speed. This speed varies depending on the mass, size, and shape of the object.
In that case, the object is said to have achieved terminal speed.
It will fall faster and faster for a while - until it eventually reaches a "terminal speed", at which air resistance and gravity are in balance. After that, it will continue falling at a constant speed.
The difference between terminal speed and terminal velocity is really simple. Terminal speed can be used to refer to the maximum speed an object can reach before factors like friction prevent anymore speed to be gained. Terminal velocity, however, generally refers to the rate at which this speed was gained.
Terminal velocity of an object can be determined by balancing the forces acting on it. When the force of gravity pulling the object down is equal to the force of air resistance pushing up, the object reaches its terminal velocity. This can be calculated using the object's weight, surface area, and air density.
Terminal velocity is determined by the balance between gravitational force pulling an object downward and air resistance opposing its motion. Factors influencing terminal velocity include the object's weight, its surface area exposed to air resistance, and the density of the medium through which it is falling. Increasing any of these factors can increase terminal velocity.
More resistance, caused by a greater density.
The speed of sound through a medium depends on the density of the medium and the density of air is affected by temperature.
Terminal velocity is the speed an object reaches when the force of gravity is balanced by the force of air resistance. At terminal velocity, the object no longer accelerates and falls at a constant speed. This speed varies depending on the mass, size, and shape of the object.
Speed of sound would increase as the temperature of the air increases Speed of sound increases as humidity of air increases Speed of sound is affected by the density of the air. As density increases velocity of sound decreases
terminal velocity
In that case, the object is said to have achieved terminal speed.
To determine the density of air, one can use the ideal gas law equation, which relates the density of a gas to its temperature and pressure. By measuring the temperature and pressure of the air, one can calculate its density using the formula: density pressure / (gas constant temperature).
Terminal velocity that occurs during free fall describes the velocity at which drag force from the air becomes equal to the force from the weight of an object, and the object no longer accelerates, causing velocity to remain constant.